Abstract
Some philosophers search for the mark of the cognitive: a set of individually necessary and jointly sufficient conditions identifying all instances of cognition. They claim that the mark of the cognitive is needed to steer the development of cognitive science on the right path. Here, I argue that, at least at present, it cannot be provided. First (§2), I identify some of the factors motivating the search for a mark of the cognitive, each yielding a desideratum the mark is supposed to satisfy (§2.1). I then (§2.2) highlight a number of tensions in the literature on the mark of the cognitive, suggesting they’re best resolved by distinguishing two distinct programs. The first program (§3) is that of identifying a mark of the cognitive capturing our everyday notion of cognition. I argue that such a program is bound to fail for a number of reasons: it is not clear whether such an everyday notion exists; and even if it existed, it would not be able to spell out individually necessary and jointly sufficient conditions for cognition; and even if it were able to spell them out, these conditions won’t satisfy the desiderata a mark of the cognitive should satisfy. The second program is that of identifying a mark of the cognitive spelling out a genuine scientific kind. But the current state of fragmentation of cognitive science, and the fact that it is splintered in a myriad of different research traditions, prevent us from identifying such a kind. And we have no reason to think that these various research traditions will converge, allowing us to identify a single mark. Or so, at least, I will argue in (§4). I then conclude the paper (§5) deflecting an intuitive objection, and exploring some of the consequences of the thesis I have defended.
References
Adams, F. (2010). Why we still need a mark of the cognitive. Cognitive Systems Research, 11(4), 324-331.
Adams, F. (2016). Information and cognition. In L. Floridi (Ed.), The Routledge Handbook of Philosophy of Information (pp.321 - 332). NY: Routledge.
Adams, F. (2018). Cognition wars. Studies in History and Philosophy of Science A, 68, 20-30.
Adams, F. (2019). The elusive extended mind. In M. Colombo, E. Irvine, M. Stapleton (Eds.), Andy Clark and His Critics (pp. 21-31). New York: Oxford University Press.
Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43-64.
Adams, F., & Aizawa, K. (2008). The Bounds of Cognition. Oxford: Blackwell.
Adams, F., & Aizawa, K. (2010). The value of cognitivism in thinking about extended cognition. Phenomenology and the cognitive sciences, 9(4), 579-603.
Adams, F., & Garrison, R. (2013). The mark of the cognitive. Minds and Machines, 23(3), 339-352.
Aikins, K. (1996). Of sensory systems and the aboutness of mental states. Journal of Philosophy, 93(7), 337-372
Aizawa, K. (2017). Cognition and behavior. Synthese, 194(11), 4269-4288.
Akagi, M. (2016). Cognition in practice: conceptual development and disagreement in cognitive science. Ph.D. Dissertation. University of Pittsburgh. Retrieved at http://d-scholarship.pitt.edu/27590/1/akagimsm_etd.pdf last accessed 02/03/2022
Akagi, M. (2018). Rethinking the problem of cognition. Synthese, 195(8), 3547-3570.
Akagi, M. (2021). Cognition as the sensitive management of an agent’s behavior. Philosophical Psychology, https://doi.org/10.1080/09515089.2021.2014802
Anderson, M. (2014). After Phrenology. Cambridge, MA.: The MIT Press.
Allen, C. (2017). On not defining cognition. Synthese, 194(11), 4233-4249.
Arras, K.O., & Cerqui, D. (2005). Do we want to share our lives and bodies with robots? A 2000 people survey. Swiss Federal Institute of Technology, report 605.
Bach-y-Rita, P. & Kercel, S. W: (2003). Sensory substitution and the human-machine interface. Trends in Cognitive Sciences, 7(12), 541-546.
Baluska, F., & Levin, M. (2016). On having no head: cognition throughout biological systems. Frontiers in Psychology, 7: 902.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577-560.
Bayne, T. et al. (2018). What is cognition?. Current Biology, 29(13), R608-R615.
Bechtel, W. (1998). Representations and cognitive explanations. Assessing the dynamicists challenge in cognitive science. Cognitive Science, 22(3), 295-317.
Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1-2), 173-215.
Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91-99.
Beer, R., et al. (1997). Biologically inspired approaches to robotics: what can we learn from insects? Communications of the ACM, 40(3), 30-38.
Bermudez, J. (2010). Cognitive Science: An introduction to the sciences of the mind, Cambrdige, Cambridge University Press.
Bocanegra, B. R. et al. (2019). Intelligent problem solvers externalize cognitive operations. Nature Human Behavior, 3(2), 136-142.
Boden, M. (2008). Mind as Machine: A History of Cognitive Science. New York: Oxford University Press.
Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509-1534.
Boyd, R. (1991). Realism, anti-foundationalism, and the enthusiasm for natural kinds. Philosophical studies, 61(1), 127-148.
Buckner, C. (2015). A property cluster theory of cognition. Philosophical Psychology, 28(3), 307-336.
Buzaki, G. (2019. The Brain from Inside Out. New York: Oxford University Press.
Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge, MA.: The MIT Press.
Davies-Barton, T., et al. (2022). Debt-free Intelligence. Preprint, http://philsci-archive.pitt.edu/20426/
Calvo Garzon, F. (2007). The quest for cognition in plant neurobiology. Plant Signaling & Behavior, 2(4), 208-211.
Chalmers, D. (1996). The Conscious Mind. New York: Oxford University Press.
Charrettes, P. (2006). The Architecture of the Mind: Massive modularity and the flexibility of thought. Gloucestershire: Clarendon Press
Chemero, A. (2009). Radical Embodied Cognitive Science. Cambridge, MA.: The MIT Press.
Chomsky, N. (1995). Language and nature. Mind, 104(413), 1-61.
Churchland, P. S. (1987). Epistemology in the age of neuroscience. The Journal of Philosophy, 84(10), 544-553
Churchland, P. S. (2002). Brainwise. Cambridge, MA.: The MIT Press.
Churchland, P. M. (1981). Eliminative materialism and propositional attitudes. The Journal of Philosophy, 78(2), 67-90.
Churchland, P. M. (1992). A Neurocomputational Perspective. Cambridge, MA.: The MIT Press.
Cisek, P., & Hayden B. Y. (2022). Neuroscience needs evolution. Philosophical Transactions of the Royal Society B, 377(1844), 20200518.
Clark, A: (1993). Associative Engines. Cambridge, MA.: The MIT Press.
Clark, A. (1997). Being There. Cambridge, MA.: The MIT Press.
Clark, A. (2001). Reasons, robots, and the extended mind. Mind & Language, 16(2), 121-145.
Clark, A. (2008). Supersizing the Mind. New York: Oxford University Press.
Cleland, C E (2012). Life without definitions. Synthese, 185(1), 125-144.
Corcoran, A., et al. (2020). From allostatic agents to counterfactual cognizers: active inference, biological regulation, and the origins of cognition. Biology and Philosophy, 35(3), 1-45.
Dennett, D. C. (1978). Why not the whole iguana? Behavioral and Brain Sciences, 1(1), 103-104.
Dennett, D. C. (1991). Consciousness Explained. Boston: Little Brown.
Eliasmith, C. (2013). How to Build a Brain. New York: Oxford University Press.
Elpidorou, A. (2014). Reasoning about the mark of the cognitive. Minds and Machines, 24(2), 201-211.
Facchin, M. (2021). Structural representations do not meet the job description challenge. Synthese, 199(3-4), 5479-5505.
Feest, U. (2005). Operationalism in psychology: what the debate is about and what the debate should be about. Journal Of the History of the Behavioral Sciences, 41(2), 131-149.
Fodor, J. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3(1), 63-73.
Fodor, J. (1981). The present state of the innateness controversy. In J. Fodor (Ed.), Representations: philosophical essays on the foundations of cognitive science (pp. 127-137). Cambridge, MA.: The MIT Press.
Fodor, J. (1999). Why the brain? London Review of Books, 19(30), accessed at https://www.lrb.co.uk/the-paper/v21/n19/jerry-fodor/diary last accessed 03/03/2022
Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28(1-2), 3-71.
Frank, A. et al. (2022). Intelligence as a planetary scale process. International Journal of Astrobiology. https://doi.org/10.1017/S147355042100029X.
Gardner, H. (1987). The Mind’s New Science. Basic books.
Gessel, B., et al. (2021). Multivariate pattern analysis and the search for neural representations. Synthese, 199(3-4), 12869-12889.
Hacken, H. (1978). Synergistics: an introduction. Berlin/New Work: Springer.
Haueis, P. (2021). A generalized patchwork approach to scientific concepts. The British Journal of Philosophy of Science, https://doi.org/10.1086/716179.
Hurley, S. (2001). Perception and action: alternative views. Synthese, 129(1), 3-40.
Kaplan, D., & Bechtel, W. (2011). Dynamical models: an alternative or complement to mechanistic explanations? Topics in Cognitive Science, 3(2), 438-444.
Keijzer, F. (2001). Representation and Behavior. Cambridge, MA.: The MIT Press.
Keijzer, F. (2021). Demarcating cognition: the cognitive life sciences. Synthese, 198(1), 137-157.
Kelso, S. (1995). Dynamic Patterns. Cambridge, MA.: The MIT Press.
Kiverstein, J., & Sims, M. (2021). Is free-energy minimization the mark of the cognitive?, Biology and Philosophy, 36(2), 1-27.
Kriegskorte, N. & Kevit, R. (2013). Representational Geometry: Integrating Cognition, Computation, and the Brain. Trends in Cognitive Sciences, 17, 401–12.
Lamb, M., & Chemero, A. (2018). Interaction in the Open. In A. Newen, L. De Bruin, S. Gallagher (Eds.), The Oxford Handbook of 4E Cognition (pp. 147-162). New York: Oxford University Press.
Laudan, (1977). Progress and its problem: Towards a theory of scientific growth. Berkeley: University of California Press.
Levin, M. (2022). technological approach to mind everywhere: an experimentally grounded framework for understanding diverse bodies and minds. Frontiers in System Neuroscience: 17.
Loomis, J. et al. (2012). Sensory substitution of vision: importance of perceptual cognitive processing. In R. Manduchi, S. Kurniawan (Eds.), Assistive technology for blindness and low vision (179-210) CRC Press.
Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7(1), 11-29.
Lyon, P. (2015). The cognitive cell: bacterial behavior revisited. Frontiers in Microbiology, 6: 264.
Lyon, P. (2020). Of what is “minimal cognition” the half-backed version? Adaptive Behavior, 28(6), 407-424.
Machery, E. (2009). Doing Without Concepts. New York: Oxford University Press.
Machery, E. (2012). Why I stopped worrying about the definition of life… and why you should as well. Synthese, 185(1), 145-164.
Malafouris, L. (2013). How things shape the mind. Cambridge, MA.: the MIT Press.
McGinn, C. (1989). Can we solve the mind body problem? Mind, 98(391), 349-366.
McGivern, P. (2019). Active materials: minimal models of cognition? Adaptive Behavior, 28(6), 441-451.
Medin, D. L., & Schaffer, M. (1978). Context theory of classification learning. Psychological Review, 85, 207-238.
Miłkowski, M. et al. (2018). From wide cognition to mechanisms: a silent revolution. Frontiers In Psychology: 2393.
Minsky, M., & Papert, S. (1969). Perceptrons. The MIT Press(??)
Milner, D., & Goodale, M. A. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-25.
Mitchell, M. (2019). Artificial Intelligence: a guide for thinking humans. UK: Penguin.
Murphy, G. L., & Medin, D. L. (1978). The role of theories in conceptual coherence. Psychological Review, 92(3), 289.
Newell, A. & Simon, H. (1976). Computer science as an empirical inquiry: symbols and search. Reprinted in J. Haugeland (Ed.), Mind Design II (81-110). Cambridge, MA.: The MIT Press.
Newen, A. (2017). What are cognitive processes? An example-based approach. Synthese, 194(11), 4251-4268.
Nolfi, S., (1999). The power and limits of purely reactive agents. Neurocomputing, 42(1-4), 119-145.
Núñez, R., et al. (2019). What happened to Cognitive science? Nature Human Behavior, 3(8), 782-791.
Orlandi, N. (2016). The Innocent Eye. New York: Oxford University Press.
Parr, T., et al. (2022). Active Inference. Cambridge, MA.: The MIT Press.
Pessoa, L. et al (2022). Refocusing neuroscience: moving away from mental categories and towards complex behaviors. Philosophical Transactions of the Royal Society B, 377(1844), 20200534.
Pfeifer, R., & Bongard, J. (2006). How the Body Shapes the Way We Think. Cambridge, MA.: The MIT Press.
Piccinini, G. (2020). Neurocognitive Mechanisms: explaining biological cognition. New York: Oxford University Press.
Ramsey, W. (2007). Representation Reconsidered. Cambridge: Cambridge University Press.
Ramsey, W. (2017). Must cognition be representational? Synthese, 194(11), 4197-4214.
Ritchie, J.B., iet al. (2019). Decoding the brain: neural representations and the limits of multivariate pattern analysis in cognitive neuroscience. The British Journal of Philosophy of Science, 70(2), 581-607.
Risko, E. F. & Gilbert, S. J. Cognitive offloading. Trends Cogn. Sci. 20, 676–688 (2016).
Rosch, E. & Mervis, C. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7, 573-603.
Rowlands, M. (2009). Extended cognition and the mark of the cognitive. Philosophical Psychology, 22(1), 1-19.
Rowlands, M. (2010). The New Sciences of the Mind. Cambridge, MA.: The MIT Press.
Rumelhart, D., McClelland, J., & the PDP group (1986). Parallel Distributed Processing. Vol I and II. Cambridge, MA.: The MIT Press.
Rupert, R. (2013). Memory, natural kinds, and cognitive extension. Review of Philosophy and Psychology, 4(1), 25-47.
Ryan, S., et al (2021). Active inference models do not contradict folk psychology. PsyArXiv Preprint 10.31234/osf.io/kr5xf
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210-229.
Scarantino, A. (2012) . How to define emotions scientifically. Emotion Review, 4(4), 358-368.
Schwitzgebel, E. (unpublished manuscript). Borderline Consciousness, When It’s Neither Determinately True nor Determinately False That Experience Is Present. Accessed at: http://www.faculty.ucr.edu/~eschwitz/SchwitzPapers/BorderlineConsciousness-211220.htm Last accessed 03/03/2023
Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3(3), 417-424.
Searle, J. (1984). Intentionality and its place in nature. Dialectica, 38(2-3), 87-99.
Selfridge, O. G., & Neisser, U. (1960). Pattern recognition by machines. Scientific American, 203(2), 60-69.
Shapiro, L. (2013). Dynamics and cognition. Minds and Machines, 23(3), 355-375.
Sims, A. (2017). The problems with prediction: the dark room problem and the scope dispute. In T. Metzinger, W. Wiese (Eds.), Philosophy and Predictive Processing: 23. Frankfurt am Main: The MIND Group. https://doi.org/10.15502/9783958573246
Sims, M. (2021). A continuum of intentionality: linking biogenic and anthropogenic approaches to cognition. Biology and Philosophy 36(6), 1-31.
Sprevak, M. (2009). Extended cognition and functionalism. The Journal of Philosophy, 106(9), 503-527.
Steiner, P. (2021). Radical views of cognition and the dynamics of scientific change. Synthese, 198(1), 547-569.
Staddon, J. (2014). The New Behaviorism, Psychology Press.
Tani, J. (2007). On the interactions between top-down anticipation and bottom-up regression. Frontiers in Neurorobotics, 1, 2.
Tani, J. (2016). Exploring Robotic Minds. NY: Oxford University Press.
Taylor, H., & Vickers, P. (2017). Conceptual fragmentation and the rise of eliminativism. European Journal for Philosophy of Science, 7(1), 17-40.
Thelen, E:, & Smith, L. (1996). A Dynamic System Approach to the Development of Cognition and Action. Cambridge, MA.: The MIT Press.
Thomspon, E., & Piccinini, G. (2018). Neural representations observed. Minds & Machines, 28(1), 191-235.
Tripladi, L. (Forthcoming). Parallel Minds. Cambridge, MA.: The MIT Press.
Trovato, G., & Eyssel, F. (2017). Mind attribution to androids: a comparative study with Italian and Japanese adolescents. 26th IEEE international symposium on robot and human interactive communication (Ro-MAN), (pp. 561-566), IEEE.
Van Dujin, M., et al. (2006). Principles of minimal cognition: casting cognition as sensorimotor coordination. Adaptive Behavior, 14(2), 157-170.
Van Gelder, T. (1995). What might cognition be, if not computation?. The Journal of Philosophy, 192(5), 345-381.
von Neumann, J. (1958). The Computer and the Brain. New Haven, Connecticut: Yale University.
Waisman, F. (1968). How I see philosophy. London: Palgrave Millan
Walter, S. (2010). Cognitive extension, the parity argument, functionalism, and the mark of the cognitive. Synthese, 177(2), 285-300.
Walter, S., & Kasner, L. (2012). The where and what of cognition: the untenability of cognitive agnosticism and the limits of the Motley Crew Argument. Cognitive Systems Research, 13(1), 12-23.
Webb, B. (2006). Transformation, encoding, representation. Current Biology, 16(6), R184-R185.
Wheeler, M. (2011). In search of clarity about parity. Philosophical Studies, 152(3), 417-425.
Wheeler, M. (2019). Breaking the waves. In M. Colombo, E. Irvine, M. Stapleton (Eds.), Andy CLark and His Critics (pp. 81-95). NY:Oxford University Press.
Williamson, T. (1994). Vagueness. New York: Routledge.
Yakura, H. (2019). A hypothesis: CRISPR-Cas as a minimal cognitive system. Adaptive Behavior, 27(3), 167-173.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Marco Facchin