Serotonin, Predictive Processing and Psychedelics


Predictive Processing
Reinforcement Learning

How to Cite

Colombo, M. (2022). Serotonin, Predictive Processing and Psychedelics. Philosophy and the Mind Sciences, 3.


Letheby’s "Philosophy of Psychedelics" relies on Predictive Processing to try and find unifying explanations relevant to understanding how serotonergic psychedelics work in psychiatric therapy, what subjective experiences are associated with their use and whether such experiences are epistemically defective. But if Predictive Processing lacks genuinely explanatory unifying power, Letheby’s account of psychedelic therapy risks being unwarranted. In this commentary, I motivate this worry and sketch an alternative interpretation of psychedelic therapy within the Reinforcement Learning framework.


Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4(47).

Boureau, Y. L., & Dayan, P. (2011). Opponency revisited: Competition and cooperation between dopamine and serotonin. Neuropsychopharmacology, 36, 74–97.

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacological Reviews, 71(3), 316–344.

Clark, A. (2013). The many faces of precision. Replies to commentaries on “Whatever next? Neural prediction, situated agents, and the future of cognitive science.” Frontiers in Psychology, 4, 270.

Colombo, M. (2014). Deep and beautiful. The reward prediction error hypothesis of dopamine. Studies in History and Philosophy of Science, part C. Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 57–67.

Colombo, M. (2016). Social motivation in computational neuroscience: Or, if brains are prediction machines, then the Humean theory of motivation is false. In The Routledge Handbook of Philosophy of the Social Mind (pp. 336–356). Routledge.

Colombo, M., & Fabry, R. E. (2021). Underlying delusion: Predictive processing, looping effects, and the personal/subpersonal distinction. Philosophical Psychology, 1–27.

Colombo, M., & Heinz, A. (2019). Explanatory integration, computational phenotypes, and dimensional psychiatry: The case of alcohol use disorder. Theory & Psychology, 29(5), 697–718.

Colombo, M., & Wright, C. (2017). Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain and Cognition, 112, 3–12.

Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530.

Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences, 107(40), 17433–17438.

Crockett, M. J., Clark, L., & Robbins, T. W. (2009). Reconciling the role of serotonin in behavioral inhibition and aversion: Acute tryptophan depletion abolishes punishment-induced inhibition in humans. Journal of Neuroscience, 29(38), 11993–11999.

Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neuron, 76(1), 240–256. 6/j.neuron.2012.09.027

Dayan, P., & Huys, Q. J. (2009). Serotonin in affective control. Annual Review of Neuroscience, 32, 95–126.

Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4-6), 495–506.

Doya, K., Miyazaki, K. W., & Miyazaki, K. (2021). Serotonergic modulation of cognitive computations. Current Opinion in Behavioral Sciences, 38, 116–123.

FitzGerald, T. H., Dolan, R. J., & Friston, K. (2015). Dopamine, reward learning, and active inference. Frontiers in Computational Neuroscience, 9(136).

Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2014). The anatomy of choice: Dopamine and decision making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(20130481).

Hoyer, D., Hannon, J. P., & Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology Biochemistry and Behavior, 71(4), 533–554.

Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21(1), 9–15.

Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293–1299.

Letheby, C. (2021a). Naturalistic entheogenics: Précis of philosophy of psychedelics. PsyArXiv.

Letheby, C. (2021b). Philosophy of Psychedelics. Oxford University Press.

Letheby, C., & Gerrans, P. (2017). Self unbound: Ego dissolution in psychedelic experience. Neuroscience of Consciousness, 1.

Litwin, P., & Miłkowski, M. (2020). Unification by fiat: Arrested development of predictive processing. Cognitive Science, 44(7), 12867.

Liu, Z., Lin, R., & Luo, M. (2020). Reward contributions to serotonergic functions. Annual Review of Neuroscience, 43, 141–162.

Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154–162.

Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013). Free energy, precision and learning: The role of cholinergic neuromodulation. Journal of Neuroscience, 33(19), 8227–8236.

Seo, C., Guru, A., Jin, M., Ito, B., Sleezer, B. J., Ho, Y. Y., & Warden, M. R. (2019). Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science, 363(6426), 538–542.

Yon, D., & Frith, C. D. (2021). Precision and the Bayesian brain. Current Biology, 31(17), 1026–1032.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Matteo Colombo