Abstract
Letheby’s "Philosophy of Psychedelics" relies on Predictive Processing to try and find unifying explanations relevant to understanding how serotonergic psychedelics work in psychiatric therapy, what subjective experiences are associated with their use and whether such experiences are epistemically defective. But if Predictive Processing lacks genuinely explanatory unifying power, Letheby’s account of psychedelic therapy risks being unwarranted. In this commentary, I motivate this worry and sketch an alternative interpretation of psychedelic therapy within the Reinforcement Learning framework.
References
Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4(47). https://doi.org/10.3389/fpsyt.2013.00047
Boureau, Y. L., & Dayan, P. (2011). Opponency revisited: Competition and cooperation between dopamine and serotonin. Neuropsychopharmacology, 36, 74–97. https://doi.org/10.1038/npp.2010.151
Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacological Reviews, 71(3), 316–344. https://doi.org/10.1124/pr.118.017160
Clark, A. (2013). The many faces of precision. Replies to commentaries on “Whatever next? Neural prediction, situated agents, and the future of cognitive science.” Frontiers in Psychology, 4, 270. https://doi.org/10.3389/fpsyg.2013.00270
Colombo, M. (2014). Deep and beautiful. The reward prediction error hypothesis of dopamine. Studies in History and Philosophy of Science, part C. Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 57–67. https://doi.org/10.1016/j.shpsc.2013.10.006
Colombo, M. (2016). Social motivation in computational neuroscience: Or, if brains are prediction machines, then the Humean theory of motivation is false. In The Routledge Handbook of Philosophy of the Social Mind (pp. 336–356). Routledge.
Colombo, M., & Fabry, R. E. (2021). Underlying delusion: Predictive processing, looping effects, and the personal/subpersonal distinction. Philosophical Psychology, 1–27. https://doi.org/10.1080/09515089.2021.1914828
Colombo, M., & Heinz, A. (2019). Explanatory integration, computational phenotypes, and dimensional psychiatry: The case of alcohol use disorder. Theory & Psychology, 29(5), 697–718. https://doi.org/10.1177/0959354319867392
Colombo, M., & Wright, C. (2017). Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain and Cognition, 112, 3–12. https://doi.org/10.1016/j.bandc.2016.02.003
Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530. https://doi.org/10.1007/s00213-009-1561-0
Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences, 107(40), 17433–17438. https://doi.org/10.1073/pnas.1009396107
Crockett, M. J., Clark, L., & Robbins, T. W. (2009). Reconciling the role of serotonin in behavioral inhibition and aversion: Acute tryptophan depletion abolishes punishment-induced inhibition in humans. Journal of Neuroscience, 29(38), 11993–11999. https://doi.org/10.1523/JNEUROSCI.2513-09.2009
Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neuron, 76(1), 240–256. https://doi.org/10.101 6/j.neuron.2012.09.027
Dayan, P., & Huys, Q. J. (2009). Serotonin in affective control. Annual Review of Neuroscience, 32, 95–126. https://doi.org/10.1146/annurev.neuro.051508.135607
Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4-6), 495–506. https://doi.org/10.1016/S0893-6080(02)00044-8
Doya, K., Miyazaki, K. W., & Miyazaki, K. (2021). Serotonergic modulation of cognitive computations. Current Opinion in Behavioral Sciences, 38, 116–123. https://doi.org/10.1016/j.cobeha.2021.02.003
FitzGerald, T. H., Dolan, R. J., & Friston, K. (2015). Dopamine, reward learning, and active inference. Frontiers in Computational Neuroscience, 9(136). https://doi.org/10.3389/fncom.2015.00136
Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2014). The anatomy of choice: Dopamine and decision making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(20130481). https://doi.org/10.1098/rstb.2013.0481
Hoyer, D., Hannon, J. P., & Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology Biochemistry and Behavior, 71(4), 533–554. https://doi.org/10.1016/S0091-3057(01)00746-8
Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21(1), 9–15. https://doi.org/10.1016/S0893-133X(99)00012-3
Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293–1299. https://doi.org/10.1038/nn.4615
Letheby, C. (2021a). Naturalistic entheogenics: Précis of philosophy of psychedelics. PsyArXiv. https://doi.org/10.31234/osf.io/ztewb
Letheby, C. (2021b). Philosophy of Psychedelics. Oxford University Press.
Letheby, C., & Gerrans, P. (2017). Self unbound: Ego dissolution in psychedelic experience. Neuroscience of Consciousness, 1. https://doi.org/10.1093/nc/nix016
Litwin, P., & Miłkowski, M. (2020). Unification by fiat: Arrested development of predictive processing. Cognitive Science, 44(7), 12867. https://doi.org/10.1111/cogs.12867
Liu, Z., Lin, R., & Luo, M. (2020). Reward contributions to serotonergic functions. Annual Review of Neuroscience, 43, 141–162. https://doi.org/10.1146/annurev-neuro-093019-112252
Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154–162. https://doi.org/10.1038/nn.2723
Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013). Free energy, precision and learning: The role of cholinergic neuromodulation. Journal of Neuroscience, 33(19), 8227–8236. https://doi.org/10.1523/JNEUROSCI.4255-12.2013
Seo, C., Guru, A., Jin, M., Ito, B., Sleezer, B. J., Ho, Y. Y., & Warden, M. R. (2019). Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science, 363(6426), 538–542. https://doi.org/10.1126/science.aau8722
Yon, D., & Frith, C. D. (2021). Precision and the Bayesian brain. Current Biology, 31(17), 1026–1032. https://doi.org/10.1016/j.cub.2021.07.044
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Matteo Colombo