Distinguishing absence of awareness from awareness of absence


Neural Correlate of Consciousness

How to Cite

Mazor, M., & Fleming, S. M. (2020). Distinguishing absence of awareness from awareness of absence. Philosophy and the Mind Sciences, 1(II). https://doi.org/10.33735/phimisci.2020.II.69


Contrasting brain states when subjects are aware compared to unaware of a presented stimulus has allowed researchers to isolate candidate neural correlates of consciousness. Here we propose that an important next step in this research program is to investigate, perhaps paradoxically, brain states that covary with reports of absences of awareness. Specifically, we propose that in order to distinguish content-specific and content-invariant neural correlates of consciousness, a distinction needs to be made between the neural correlates of awareness of stimulus absence, and the neural correlates of absence of awareness (of either stimulus presence or absence). We ground this distinction in higher-order computational models of consciousness, where the state of higher-order nodes is invariant to the specific contents of awareness. To map the different levels of these models to neurophysiological correlates, we suggest two empirical approaches – inverted designs and two-dimensional awareness reports – in which reports about awareness and stimulus presence can be dissociated.



Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(2), 737–746. https://doi.org/10.1016/j.neubiorev.2011.12.003

Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E., & Bachmann, T. (2019). Coupling the state and contents of consciousness. Frontiers in Systems Neuroscience, 13, 43. https://doi.org/10.3389/fnsys.2019.00043

Baars, B. J. (1993). A cognitive theory of consciousness. Cambridge University Press.

Bayne, T., & Hohwy, J. (2013). Consciousness: Theoretical approaches. In A. E. Cavanna, A. Nani, H. Blumenfeld, & S. Laureys (Eds.), Neuroimaging of Consciousness (pp. 23–35). Springer Berlin Heidelberg.

Binder, M., Gociewicz, K., Windey, B., Koculak, M., Finc, K., Nikadon, J., Derda, M., & Cleeremans, A. (2017). The levels of perceptual processing and the neural correlates of increasing subjective visibility. Consciousness and Cognition, 55, 106–125. https://doi.org/10.1016/j.concog.2017.07.010

Boly, M., Massimini, M., Tsuchiya, N., Postle, B. R., Koch, C., & Tononi, G. (2017). Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and Neuroimaging Evidence. The Journal of Neuroscience, 37(40), 9603–9613. https://doi.org/10.1523/JNEUROSCI.3218-16.2017

Christensen, M. S., Ramsøy, T. Z., Lund, T. E., Madsen, K. H., & Rowe, J. B. (2006). An fMRI study of the neural correlates of graded visual perception. NeuroImage, 31(4), 1711–1725. https://doi.org/10.1016/j.neuroimage.2006.02.023

Davidson, M. J., Mithen, W., Hogendoorn, H., van Boxtel, J. J., & Tsuchiya, N. (2020). The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife, 9, e60031. https://doi.org/10.7554/eLife.60031

Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron, 70(2), 200–227. https://doi.org/10.1016/j.neuron.2011.03.018

Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100(14), 8520–8525. https://doi.org/10.1073/pnas.1332574100

Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biology, 5(10), e260. https://doi.org/10.1371/journal.pbio.0050260

Del Cul, A., Dehaene, S., Reyes, P., Bravo, E., & Slachevsky, A. (2009). Causal role of prefrontal cortex in the threshold for access to consciousness. Brain, 132(9), 2531–2540. https://doi.org/10.1093/brain/awp111

Fleming, S. M. (2020). Awareness as inference in a higher-order state space. Neuroscience of Consciousness, 2020(1), niz020. https://doi.org/10.1093/nc/niz020

Förster, J., Koivisto, M., & Revonsuo, A. (2020). ERP and MEG correlates of visual consciousness: The second decade. Consciousness and Cognition, 80, 102917. https://doi.org/10.1016/j.concog.2020.102917

Frassle, S., Sommer, J., Jansen, A., Naber, M., & Einhauser, W. (2014). Binocular rivalry: Frontal activity relates to introspection and action but not to perception. Journal of Neuroscience, 34(5), 1738–1747. https://doi.org/10.1523/JNEUROSCI.4403-13.2014

Graziano, M. S. A. (2013). Consciousness and the Social Brain. Oxford University Press.

Graziano, M. S. A., & Webb, T. W. (2015). The attention schema theory: A mechanistic account of subjective awareness. Frontiers in Psychology, 06. https://doi.org/10.3389/fpsyg.2015.00500

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. John Wiley.

Helmholtz, H. von. (1948). Concerning the perceptions in general, 1867. In W. Dennis (Ed.), Readings in the history of psychology (pp. 214–230). Appleton-Century-Crofts.

Kanai, R., Walsh, V., & Tseng, C.-h. (2010). Subjective discriminability of invisibility: A framework for distinguishing perceptual and attentional failures of awareness. Consciousness and Cognition, 19(4), 1045–1057. https://doi.org/10.1016/j.concog.2010.06.003

Kellij, S., Fahrenfort, J., Lau, H., Peters, M. A. K., & Odegaard, B. (2020). An investigation of how relative precision of target encoding influences metacognitive performance. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-020-02190-0

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Klein, C., & Barron, A. B. (2020). How experimental neuroscientists can fix the hard problem of consciousness. Neuroscience of Consciousness, 2020(1), niaa009. https://doi.org/10.1093/nc/niaa009

Ko, Y., & Lau, H. (2012). A detection theoretic explanation of blindsight suggests a link between conscious perception and metacognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594), 1401–1411. https://doi.org/10.1098/rstb.2011.0380

Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews Neuroscience, 17(5), 307–321. https://doi.org/10.1038/nrn.2016.22

Lau, H. (2019). Consciousness, metacognition, & perceptual reality monitoring. PsyArXiv. https://doi.org/10.31234/osf.io/ckbyf

Lau, H. C. (2007). A higher order Bayesian decision theory of consciousness. In Progress in Brain Research (Vol. 168, pp. 35–48). Elsevier. https://doi.org/10.1016/S0079-6123(07)68004-2

Lau, H. C., & Passingham, R. E. (2006). Relative blindsight in normal observers and the neural correlate of visual consciousness. Proceedings of the National Academy of Sciences, 103(49), 18763–18768. https://doi.org/10.1073/pnas.0607716103

Lau, H., & Rosenthal, D. (2011). Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences, 15(8), 365–373. https://doi.org/10.1016/j.tics.2011.05.009

Mazor, M., Friston, K. J., & Fleming, S. M. (2020). Distinct neural contributions to metacognition for detecting, but not discriminating visual stimuli. eLife, 9, e53900. https://doi.org/10.7554/eLife.53900

Metzinger, T. (2020). Minimal phenomenal experience: Meditation, tonic alertness, and the phenomenology of “pure” consciousness. Philosophy and the Mind Sciences, 1(I), 1–44. https://doi.org/10.33735/phimisci.2020.I.46

Meuwese, J. D. I., Loon, A. M. van, Lamme, V. A. F., & Fahrenfort, J. J. (2014). The subjective experience of object recognition: Comparing metacognition for object detection and object categorization. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-014-0643-1

Odegaard, B., Knight, R. T., & Lau, H. (2017). Should a few null findings falsify prefrontal theories of conscious perception? The Journal of Neuroscience, 37(40), 9593–9602. https://doi.org/10.1523/JNEUROSCI.3217-16.2017

Pitts, M. A., Martínez, A., & Hillyard, S. A. (2012). Visual processing of contour patterns under conditions of inattentional blindness. Journal of Cognitive Neuroscience, 24(2), 287–303. https://doi.org/10.1162/jocn_a_00111

Ramsøy, T. Z., & Overgaard, M. (2004). Introspection and subliminal perception. Phenomenology and the Cognitive Sciences, 3(1), 1–23. https://doi.org/10.1023/B:PHEN.0000041900.30172.e8

Rutiku, R., Aru, J., & Bachmann, T. (2016). General markers of conscious visual perception and their timing. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00023

Sandberg, K., & Overgaard, M. (2015). Using the perceptual awareness scale (PAS). In M. Overgaard (Ed.), Behavioral Methods in Consciousness Research (pp. 181–196). Oxford University Press.

Sandved Smith, L., Hesp, C., Lutz, A., Mattout, J., Friston, K., & Ramstead, M. (2020). Towards a formal neurophenomenology of metacognition: Modelling meta-awareness, mental action, and attentional control with deep active inference. PsyArXiv. https://doi.org/10.31234/osf.io/5jh3c

Simons, J. S., Garrison, J. R., & Johnson, M. K. (2017). Brain Mechanisms of Reality Monitoring. Trends in Cognitive Sciences, 21(6), 462–473. https://doi.org/10.1016/j.tics.2017.03.012

Vallesi, A. (2012). Organisation of executive functions: Hemispheric asymmetries. Journal of Cognitive Psychology, 24(4), 367–386. https://doi.org/10.1080/20445911.2012.678992

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Matan Mazor, Stephen M. Fleming