Dendritic integration theory: A thalamo-cortical theory of state and content of consciousness

Versions

PDF
HTML

Keywords

Consciousness
State of consciousness
Contents of consciousness
Phenomenal experience
Thalamus
Pyramidal neuron

How to Cite

Bachmann, T., Suzuki, M., & Aru, J. (2020). Dendritic integration theory: A thalamo-cortical theory of state and content of consciousness. Philosophy and the Mind Sciences, 1(II). https://doi.org/10.33735/phimisci.2020.II.52

Abstract

The idea that the thalamo-cortical system is the crucial constituent of the neurobiological mechanisms of consciousness has a long history. For the last few decades, however, consciousness research has to a large extent overlooked the interplay between the cortex and thalamus. Here we revive an integrated view of the neurobiology of consciousness by presenting and discussing several recent major findings about the role of the thalamocortical interactions in consciousness. Based on these findings we propose a specific cellular mechanism how thalamic nuclei modulate the integration of different processing streams within single cortical pyramidal neurons. This theory is inspired by recent work done in rodents, but it integrates decades of work conducted on various species. We illustrate how this new view readily explains various properties and experimental phenomena associated with conscious experience. We discuss the implications of this idea and some of the experiments that need to be done in order to test it. Our view bridges two long-standing perspectives on the neural mechanisms of consciousness and proposes that cortical and thalamo-cortical processing interact at the level of single pyramidal cells.

https://doi.org/10.33735/phimisci.2020.II.52
PDF
HTML

References

Alkire, M. T., Haier, R. J., & Fallon, J. H. (2000). Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness and Cognition, 9(3), 370–386. https://doi.org/10.1006/ccog.1999.0423

Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science (New York), 322(5903), 876–880. https://doi.org/10.1126/science.1149213

Aru, J. (2019). From aliens to invisible limbs: The transitions that never make it into conscious experience. In Transitions between consciousness and unconsciousness (pp. 148–162). Routledge.

Aru, J., & Bachmann, T. (2013). Phenomenal awareness can emerge without attention. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00891

Aru, J., & Bachmann, T. (2017). Expectation creates something out of nothing: The role of attention in iconic memory reconsidered. Consciousness and Cognition, 53, 203–210. https://doi.org/10.1016/j.concog.2017.06.017

Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural correlates of consciousness. Neuroscience and Biobehavioral Reviews, 36(2), 737–746. https://doi.org/10.1016/j.neubiorev.2011.12.003

Aru, J., Siclari, F., Phillips, W. A., & Storm, J. F. (2020a). Apical drive—A cellular mechanism of dreaming? Neuroscience & Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2020.09.018

Aru, J., Suzuki, M., & Larkum, M. E. (2020b). Cellular mechanisms of conscious processing. Trends in Cognitive Sciences, 24(10), 814–825. https://doi.org/10.1016/j.tics.2020.07.006

Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E., & Bachmann, T. (2019). Coupling the state and contents of consciousness. Frontiers in Systems Neuroscience, 13. https://doi.org/10.3389/fnsys.2019.00043

Aru, J., Tulver, K., & Bachmann, T. (2018). It’s all in your head: Expectations create illusory perception in a dual-task setup. Consciousness and Cognition, 65, 197–208. https://doi.org/10.1016/j.concog.2018.09.001

Bachmann, T. (1984). The process of perceptual retouch: Nonspecific afferent activation dynamics in explaining visual masking. Perception & Psychophysics, 35(1), 69–84. https://doi.org/10.3758/bf03205926

Bachmann, T. (1994). Psychophysiology of visual masking: The fine structure of conscious experience. New York: Nova Science Publishers.

Bachmann, T. (1998). Fast dynamics of visibility of brief images: The perceptual-retouch viewpoint. In Toward a science of consciousness ii. The second Tucson discussions and debates. (pp. 345–359). The MIT Press.

Bachmann, T. (2000). Microgenetic approach to the conscious mind. Amsterdam: John Benjamins Publishing Company.

Bachmann, T. (2012). How to begin to overcome the ambiguity present in differentiation between contents and levels of consciousness? Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00082

Bachmann, T., & Francis, G. (2013). Visual masking: Studying perception, attention, and consciousness. Oxford: Elsevier Science.

Bachmann, T., & Murd, C. (2010). Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: Introducing a method useful for the study of neural correlates of visual awareness. Vision Research, 50(11), 1048–1053. https://doi.org/10.1016/j.visres.2010.03.013

Bayne, T. (2010). The unity of consciousness. Oxford: Oxford University Press.

Bayne, T., Hohwy, J., & Owen, A. M. (2016). Are there levels of consciousness? Trends in Cognitive Sciences, 20(6), 405–413. https://doi.org/10.1016/j.tics.2016.03.009

Bogen, J. E. (1995a). On the neurophysiology of consciousness: I. An overview. Consciousness and Cognition, 4(1), 52–62. https://doi.org/10.1006/ccog.1995.1003

Bogen, J. E. (1995b). On the neurophysiology of consciousness: Part ii. Constraining the semantic problem. Consciousness and Cognition, 4(2), 137–158. https://doi.org/10.1006/ccog.1995.1020

Brazier, M. A. B. (1960). Electrical activity of the nervous system (2nd Edition). London: Baltimore.

Brooks, B., & Jung, R. (1973). Neuronal physiology of the visual cortex. In G. Berlucchi, G. S. Brindley, B. Brooks, O. D. Creutzfeldt, E. Dodt, R. W. Doty, et al. (Eds.), Visual centers in the brain (pp. 325–440). https://doi.org/10.1007/978-3-642-65495-4_9

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313. https://doi.org/10.1038/nn1194

Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., et al. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience, 13(12), 1526–1533. https://doi.org/10.1038/nn.2682

Clascá, F., Porrero, C., Galazo, M. J., Rubio-Garrido, P., & Evangelio, M. (2016). Chapter 4 - anatomy and development of multispecific thalamocortical axons: Implications for cortical dynamics and evolution. In K. S. Rockland (Ed.), Axons and brain architecture (pp. 69–92). https://doi.org/10.1016/B978-0-12-801393-9.00004-9

Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences, 81(14), 4586–4590. https://doi.org/10.1073/pnas.81.14.4586

Dehaene, S., & Changeux, J.-P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200–227. https://doi.org/10.1016/j.neuron.2011.03.018

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1), 1–37. https://doi.org/10.1016/S0010-0277(00)00123-2

Deitcher, Y., Leibner, Y., Kutzkel, S., Zylbermann, N., & London, M. (2019). Nonlinear relationship between multimodal adrenergic responses and local dendritic activity in primary sensory cortices. bioRxiv. https://doi.org/10.1101/814657

Disney, A. A., & Higley, M. J. (2020). Diverse spatiotemporal scales of cholinergic signaling in the neocortex. Journal of Neuroscience, 40(4), 720–725. https://doi.org/10.1523/JNEUROSCI.1306-19.2019

Doty, R. W., Wilson, P. D., Bartlett, J. R., & Pecci-Saavedra, J. (1973). Mesencephalic control of lateral geniculate nucleus in primates. I. Electrophysiology. Experimental Brain Research, 18(2), 189–203. https://doi.org/10.1007/BF00234723

Förster, J., Koivisto, M., & Revonsuo, A. (2020). ERP and MEG correlates of visual consciousness: The second decade. Consciousness and Cognition, 80, 102917. https://doi.org/10.1016/j.concog.2020.102917

Gelbard-Sagiv, H., Magidov, E., Sharon, H., Hendler, T., & Nir, Y. (2018). Noradrenaline modulates visual perception and late visually evoked activity. Current Biology, 28(14), 2239–2249.e6. https://doi.org/10.1016/j.cub.2018.05.051

Gellhorn, E. (1961). Cerebral interactions: Simultaneous activation of specific and unspecific systems. In Electrical stimulation of the brain (pp. 321–328). University of Texas Press.

Ginsburg, S., & Jablonka, E. (2019). The evolution of the sensitive soul: Learning and the origins of consciousness. Cambridge, MA: MIT Press.

Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 12(11), 1444–1449. https://doi.org/10.1038/nn.2402

Halassa, M. M., & Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 1669–1679. https://doi.org/10.1038/s41593-017-0020-1

Haque, H., Lobier, M., Palva, J. M., & Palva, S. (2020). Neuronal correlates of full and partial visual conscious perception. Consciousness and Cognition, 78, 102863. https://doi.org/10.1016/j.concog.2019.102863

Harris, K. D., & Shepherd, G. M. G. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170–181. https://doi.org/10.1038/nn.3917

Hassler, R. (1978). Interaction of reticular activating system for vigilance and the truncothalamic and pallidal systems for directing awareness and attention under striatal control. In Cerebral correlates of conscious experience (pp. 111–129). North-Holland.

Honjoh, S., Sasai, S., Schiereck, S. S., Nagai, H., Tononi, G., & Cirelli, C. (2018). Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nature Communications, 9(1), 2100. https://doi.org/10.1038/s41467-01804497-x

Hudetz, A. G., Pillay, S., Wang, S., & Lee, H. (2020). Desflurane anesthesia alters cortical layer-specific hierarchical interactions in rat cerebral cortex. Anesthesiology, 132(5), 1080–1090. https://doi.org/10.1097/ALN.0000000000003179

Jones, E. G. (1985). The thalamus. New York: Springer US.

Jones, E. G. (1998). Viewpoint: The core and matrix of thalamic organization. Neuroscience, 85(2), 331–345. https://doi.org/10.1016/s0306-4522(97)00581-2

Jones, E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends in Neurosciences, 24(10), 595–601. https://doi.org/10.1016/s0166-2236(00)01922-6

Karnath, H. O., Himmelbach, M., & Rorden, C. (2002). The subcortical anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain: A Journal of Neurology, 125(2), 350–360. https://doi.org/10.1093/brain/awf032

Kim, C.-Y., & Blake, R. (2005). Psychophysical magic: Rendering the visible ’invisible’. Trends in Cognitive Sciences, 9(8), 381–388. https://doi.org/10.1016/j.tics.2005.06.012

Kimble, D. P. (1977). Psychology as a biological science. New York: Scott Foresman & Co.

Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological findings in the brain of Karen Ann Quinlan. The role of the thalamus in the persistent vegetative state. The New England Journal of Medicine, 330(21), 1469–1475. https://doi.org/10.1056/NEJM199405263302101

Koch, C. (2004). The quest for consciousness: A neurobiological approach (1st Edition). Denver, Colo.: Roberts; Company Publishers.

Koch, C. (2020). The feeling of life itself: Why consciousness is widespread but can’t be computed. Cambridge, MA: MIT Press.

Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews. Neuro-science, 17(5), 307–321. https://doi.org/10.1038/nrn.2016.22

Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11(1), 16–22. https://doi.org/10.1016/j.tics.2006.10.012

Koivisto, M., & Neuvonen, S. (2020). Masked blindsight in normal observers: Measuring subjective and objective responses to two features of each stimulus. Consciousness and Cognition, 81, 102929. https://doi.org/10.1016/j.concog.2020.102929

Kouider, S., & Dehaene, S. (2007). Levels of processing during non-conscious perception: A critical review of visual masking. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 857–875. https://doi.org/10.1098/rstb.2007.2093

Krauzlis, R. J., Lovejoy, L. P., & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165–182. https://doi.org/10.1146/annurev-neuro-062012-170249

Kuhn, G., & Rensink, R. A. (2016). The vanishing ball illusion: A new perspective on the perception of dynamic events. Cognition, 148, 64–70. https://doi.org/10.1016/j.cognition.2015.12.003

Labarrera, C., Deitcher, Y., Dudai, A., Weiner, B., Kaduri Amichai, A., Zylbermann, N., & London, M. (2018). Adrenergic modulation regulates the dendritic excitability of layer 5 pyramidal neurons in vivo. Cell Reports, 23(4), 1034–1044. https://doi.org/10.1016/j.celrep.2018.03.103

LaBerge, D. (1997). Attention, awareness, and the triangular circuit. Consciousness and Cognition, 6(2-3), 149–181. https://doi.org/10.1006/ccog.1997.0305

Lamme, V. a. F. (2004). Separate neural definitions of visual consciousness and visual attention: A case for phenomenal awareness. Neural Networks: The Official Journal of the International Neural Network Society, 17(5-6), 861–872. https://doi.org/10.1016/j.neunet.2004.02.005

Larkum, M. (2013). A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex. Trends in Neurosciences, 36(3), 141–151. https://doi.org/10.1016/j.tins.2012.11.006

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398, 338–341. https://doi.org/10.1038/18686

Lemieux, M., Chen, J.-Y., Lonjers, P., Bazhenov, M., & Timofeev, I. (2014). The impact of cortical deafferentation on the neocortical slow oscillation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(16), 5689–5703. https://doi.org/10.1523/JNEUROSCI.1156-13.2014

Libet, B. (1993). Neuronal vs. Subjective timing for a conscious sensory experience. In B. Libet (Ed.), Neurophysiology of consciousness (pp. 149–162). https://doi.org/10.1007/978-1-4612-0355-1_8

Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1377), 1841–1849. https://doi.org/10.1098/rstb.1998.0336

Mack, A., Erol, M., Clarke, J., & Bert, J. (2016). No iconic memory without attention. Consciousness and Cognition, 40, 1–8. https://doi.org/10.1016/j.concog.2015.12.006

Magnin, M., Rey, M., Bastuji, H., Guillemant, P., Mauguière, F., & Garcia-Larrea, L. (2010). Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3829–3833. https://doi.org/10.1073/pnas.0909710107

Magoun, H. W. (1958). The waking brain (1st Edition). Springfield, IL: Charles C. Thomas.

Marshel, J. H., Kim, Y. S., Machado, T. A., Quirin, S., Benson, B., Kadmon, J., et al. (2019). Cortical layer-specific critical dynamics triggering perception. Science (New York), 365(6453), p.eaaw5202. https://doi.org/10.1126/science.aaw5202

Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957. https://doi.org/10.1016/j.neubiorev.2009.12.005

Mashour, G. A. (2014). Top-down mechanisms of anesthetic-induced unconsciousness. Frontiers in Systems Neuroscience, 8, 115. https://doi.org/10.3389/fnsys.2014.00115

Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 776–798. https://doi.org/10.1016/j.neuron.2020.01.026

Mesulam, M.-M. (2000). Principles of behavioral and cognitive neurology. Oxford, New York: Oxford University Press.

Mitchell, D. B. (2006). Nonconscious priming after 17 years: Invulnerable implicit memory? Psychological Science, 17(11), 925–929. https://doi.org/10.1111/j.1467-9280.2006.01805.x

Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1(4), 455–473. https://doi.org/10.1016/0013-4694(49)90219-9

Munk, M. H., Roelfsema, P. R., König, P., Engel, A. K., & Singer, W. (1996). Role of reticular activation in the modulation of intracortical synchronization. Science (New York), 272(5259), 271–274. https://doi.org/10.1126/science.272.5259.271

Murayama, M., & Larkum, M. E. (2009). Enhanced dendritic activity in awake rats. Proceedings of the National Academy of Sciences, 106(48), 20482–20486. https://doi.org/10.1073/pnas.0910379106

Murd, C., & Bachmann, T. (2011). Spatially localized motion aftereffect disappears faster from awareness when selectively attended to according to its direction. Vision Research, 51(10), 1157–1162. https://doi.org/10.1016/j.visres.2011.03.008

Newman, J. (1995). Thalamic contributions to attention and consciousness. Consciousness and Cognition, 4(2), 172–193. https://doi.org/10.1006/ccog.1995.1024

Pal, D., Li, D., Dean, J. G., Brito, M. A., Liu, T., Fryzel, A. M., et al. (2020). Level of consciousness is dissociable from electroencephalographic measures of cortical connectivity, slow oscillations, and complexity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(3), 605–618. https://doi.org/10.1523/JNEUROSCI.1910-19.2019

Pereira de Vasconcelos, A., & Cassel, J.-C. (2015). The nonspecific thalamus: A place in a wedding bed for making memories last? Neuroscience and Biobehavioral Reviews, 54, 175–196. https://doi.org/10.1016/j.neubiorev.2014.10.021

Phillips, W. A. (2017). Cognitive functions of intracellular mechanisms for contextual amplification. Brain and Cognition, 112, 39–53. https://doi.org/10.1016/j.bandc.2015.09.005

Phillips, W. A., Bachmann, T., & Storm, J. F. (2018). Apical function in neocortical pyramidal cells: A common pathway by which general anesthetics can affect mental state. Frontiers in Neural Circuits, 12, 50. https://doi.org/10.3389/fncir.2018.00050

Pinto, Y., Haan, E. H. F. de, & Lamme, V. A. F. (2017). The split-brain phenomenon revisited: A single conscious agent with split perception. Trends in Cognitive Sciences, 21(11), 835–851. https://doi.org/10.1016/j.tics.2017.09.003

Polack, P.-O., Friedman, J., & Golshani, P. (2013). Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nature Neuroscience, 16(9), 1331–1339. https://doi.org/10.1038/nn.3464

Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science (New York), 357(6351), 596–600. https://doi.org/10.1126/science.aan3458

Purpura, K. P., & Schiff, N. D. (1997). The thalamic intralaminar nuclei: A role in visual awareness. The Neuroscientist, 3(1), 8–15. https://doi.org/10.1177/107385849700300110

Ramon y Cajal, S. (1894). The croonian lecture.— la fine structure des centres nerveux. Proceedings of the Royal Society of London, 55(331-335), 444–468. https://doi.org/10.1098/rspl.1894.0063

Rutiku, R., & Bachmann, T. (2017). Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Consciousness and Cognition, 54, 3–19. https://doi.org/10.1016/j.concog.2017.05.003

Sarter, M., & Lustig, C. (2020). Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(4), 712–719. https://doi.org/10.1523/JNEUROSCI.1305-19.2019

Seifert, T., Enzinger, C., Ropele, S., Storch, M. K., & Fazekas, F. (2004). Midbrain ischemia presenting as vertical gaze palsy: Value of diffusion-weighted magnetic resonance imaging. Cerebrovascular Diseases (Basel, Switzerland), 18(1), 3–7. https://doi.org/10.1159/000078601

Sherman, S. M., & Guillery, R. W. (2001). Exploring the thalamus. San Diego, CA: Elsevier.

Steriade, M. (1981). EEG desynchronization is associated with cellular events that are prerequisites for active behavioral states. Behavioral and Brain Sciences, 4(3), 489–492. https://doi.org/10.1017/S0140525X00010037

Steriade, M., Jones, E. G., & Llinas, R. R. (1990). Thalamic oscillations and signaling. New Jersey: Wiley.

Steriade, M., Sakai, K., & Jouvet, M. (1984). Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep. Experimental Brain Research, 54(3), 463–475. https://doi.org/10.1007/BF00235472

Suzuki, M., & Larkum, M. E. (2020). General anesthesia decouples cortical pyramidal neurons. Cell, 180(4), 666–676.e13. https://doi.org/10.1016/j.cell.2020.01.024

Takahashi, N., Ebner, C., Sigl-Glöckner, J., Moberg, S., Nierwetberg, S., & Larkum, M. E. (2020). Active dendritic currents gate descending cortical outputs in perception. Nature Neuroscience, 23(10), 1277–1285. https://doi.org/10.1038/s41593-020-0677-8

Takahashi, N., Oertner, T. G., Hegemann, P., & Larkum, M. E. (2016). Active cortical dendrites modulate perception. Science, 354(6319), 1587–1590. https://doi.org/10.1126/science.aah6066

Tasker, R. R., Organ, L. W., & Hawrylyshyn, P. (1980). Visual phenomena evoked by electrical stimulation of the human brain stem. Applied Neurophysiology, 43(3-5), 89–95. https://doi.org/10.1159/000102240

Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews. Neuroscience, 17(7), 450–461. https://doi.org/10.1038/nrn.2016.44

Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. Science (New York), 282(5395), 1846–1851. https://doi.org/10.1126/science.282.5395.1846

Tononi, G., & Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1668). https://doi.org/10.1098/rstb.2014.0167

Totah, N. K. B., Logothetis, N. K., & Eschenko, O. (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Research, 1709, 50–66. https://doi.org/10.1016/j.brainres.2018.12.031

Ward, L. M. (2011). The thalamic dynamic core theory of conscious experience. Consciousness and Cognition, 20(2), 464–486. https://doi.org/10.1016/j.concog.2011.01.007

Ward, R., Danziger, S., Owen, V., & Rafal, R. (2002). Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nature Neuroscience, 5(2), 99–100. https://doi.org/10.1038/nn794

Waterhouse, B. D., & Navarra, R. L. (2019). The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Research, 1709, 1–15. https://doi.org/10.1016/j.brainres.2018.08.032

Watson, A. B. (1986). Apparent motion occurs only between similar spatial frequencies. Vision Research, 26(10), 1727–1730. https://doi.org/10.1016/0042-6989(86)90059-3

Wurtz, R. H., McAlonan, K., Cavanaugh, J., & Berman, R. A. (2011). Thalamic pathways for active vision. Trends in Cognitive Sciences, 15(4), 177–184. https://doi.org/10.1016/j.tics.2011.02.004

Xu, N.-l., Harnett, M. T., Williams, S. R., Huber, D., O’Connor, D. H., Svoboda, K., & Magee, J. C. (2012). Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature, 492(7428), 247–251. https://doi.org/10.1038/nature11601

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Talis Bachmann