Abstract
In this paper, we want to tackle the Molyneux question thoroughly, by addressing it in terms of both ordinary perception and pictorial perception: if a congenitally blind person recovered sight, could she recognize visually the 3D shapes she already recognized tactilely, both when such shapes are given to her directly and when they are given to her pictorially, i.e., as depicted shapes? We want to claim that empirical evidence suggests that the question can be positively answered in both cases. For in the first case, such evidence shows that perception of 3D shapes is supramodal; namely, it can be equivalently achieved in different sense modalities, notably touch and vision, independently of the sensory input such shapes are accessed. While in the second case, such evidence shows that one can satisfy both in vision and in touch the condition for depicted shapes, which are typically not where the perceiver is, to be grasped by that perceiver in a picture’s subject, i.e., what the picture presents. This condition states that the picture’s vehicle, i.e., the typically 2D physical basis of a picture, is enriched by adding to its properties the 3D grouping properties that allow for a figure/ground segmentation to be performed in that vehicle’s elements.
References
Amedi, A., Jacobson, G., Hendler, T., Malach, R., & Zohary, E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cerebral Cortex, 12(11), 1202–1212. https://doi.org/10.1093/cercor/12.11.1202
Amedi, A., Merabet, L. B., Camprodon, J., Bermpohl, F., Fox, S., Ronen, I., Kim, D.-S., & Pascual-Leone, A. (2008). Neural and behavioral correlates of drawing in an early blind painter: A case study. Brain Research, 1242, 252–262. https://doi.org/10.1016/j.brainres.2008.07.088
Amedi, A., Stern, W. M., Camprodon, J. A., Bermpohl, F., Merabet, L., Rotman, S., Hemond, C., Meijer, P., & Pascual-Leone, A. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. NatureNeuroscience, 10(6), 687–689. https://doi.org/10.1038/nn1912
Baumgartner, G. (1960). Indirekte grössenbestimmung der rezeptiven felder der retina beim menschen mittels der Hermannschen gittertäuschung. Pflüger’s Archiv für Die Gesamte Physiologie Des Menschen Und Der Tiere, 272(1), 21–22. https://doi.org/10.1007/BF00680926
Bedny, M. (2017). Evidence from blindness for a cognitively pluripotent cortex. Trends in Cognitive Sciences, 21(9), 637–648. https://doi.org/10.1016/j.tics.2017.06.003
Calzavarini, F. (2021). The conceptual format debate and the challenge from (global) supramodality. The British Journal for the Philosophy of Science. https://doi.org/10.1086/717564
Calzavarini, F. (2024). Rethinking modality-specificity in the cognitive neuroscience of concrete word meaning: A position paper. Language, Cognition and Neuroscience, 39(7), 815–837. https://doi.org/10.1080/23273798.2023.2173789
Calzavarini, F., & Voltolini, A. (2023). Pictures as supramodal sensory individuals. In A. Mroczko-Wąsowicz & R. Grush (Eds.), Sensory individuals: Unimodal and multimodal perspectives (pp. 404–418). Oxford University Press. https://doi.org/10.1093/oso/9780198866305.003.0024
Chen, J., Wu, E.-D., Chen, X., Zhu, L.-H., Li, X., Thorn, F., Ostrovsky, Y., & Qu, J. (2016). Rapid integration of tactile and visual information by a newly sighted child. Current Biology, 26(8), 1069–1074. https://doi.org/10.1016/j.cub.2016.02.065
Cooke, T., Jäkel, F., Wallraven, C., & Bülthoff, H. H. (2007). Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia, 45(3), 484–495. https://doi.org/10.1016/j.neuropsychologia.2006.02.009
D’Angiulli, A., Kennedy, J. M., & Helle, M. A. (1998). Blind children recognizing tactile pictures respond like sighted children given guidance in exploration. Scandinavian Journal of Psychology, 39(3), 187–190. https://doi.org/10.1111/1467-9450.393077
Degenaar, M., Lokhorst, G.-J., Glenney, B., & Ferretti, G. (2024). Molyneux’s problem. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Summer 2024). https://plato.stanford.edu/archives/sum2024/entries/molyneux-problem/.
Dorsch, F. (2016). Seeing-in as aspect perception. In G. Kemp & G. Mras (Eds.), Wollheim, Wittgenstein, and pictorial representation (pp. 205–238). Routledge. https://api.semanticscholar.org/CorpusID:52951793
Erdogan, G., Chen, Q., Garcea, F. E., Mahon, B. Z., & Jacobs, R. A. (2016). Multisensory part-based representations of objects in human lateral occipital cortex. Journal of Cognitive Neuroscience, 28(6), 869–881. https://doi.org/10.1162/jocn_a_00937
Ferretti, G., & Glenney, B. (2020). Molyneux’s question and the history of philosophy. Routledge New York, NY.
Gaissert, N., Wallraven, C., & Bülthoff, H. H. (2010). Visual and haptic perceptual spaces show high similarity in humans. Journal of Vision, 10(11), 2–20. https://doi.org/10.1167/10.11.2
Gallace, A., & Spence, C. (2014). The neglected power of touch: What the cognitive neurosciences can tell us about the importance of touch in artistic communication. Sculpture and Touch, 107–124. https://doi.org/10.4324/9781315088228-8
Gandhi, T., Kalia, A., Ganesh, S., & Sinha, P. (2015). Immediate susceptibility to visual illusions after sight onset. Current Biology, 25(9), R358–R359. https://doi.org/10.1016/j.cub.2015.03.005
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41(10), 1409–1422. https://doi.org/10.1016/S0042-6989(01)00073-6
Heimler, B., & Amedi, A. (2020). Are critical periods reversible in the adult brain? Insights on cortical specializations based on sensory deprivation studies. Neuroscience & Biobehavioral Reviews, 116, 494–507. https://doi.org/10.1016/j.neubiorev.2020.06.034
Heinen, R., Bierbrauer, A., Wolf, O. T., & Axmacher, N. (2024). Representational formats of human memory traces. Brain Structure and Function, 229(3), 513–529. https://doi.org/10.1007/s00429-023-02636-9
Held, R. (2009). Visual-haptic mapping and the origin of cross-modal identity. Optometry and Vision Science, 86(6), 595–598. https://doi.org/10.1097/OPX.0b013e3181a72999
Held, R., Ostrovsky, Y., Gelder, B. de, Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly sighted fail to match seen with felt. Nature Neuroscience, 14(5), 551–553. https://doi.org/10.1038/nn.2795
Hopkins, R. (2000). Touching pictures. British Journal of Aesthetics, 40(1), 149–167. https://doi.org/10.1093/bjaesthetics/40.1.149
Hopkins, R. (2004). Painting, sculpture, sight, and touch. The British Journal of Aesthetics, 44(2), 149–166. https://doi.org/10.1093/bjaesthetics/44.2.149
Hopkins, R. (2008). What do we see in film? The Journal of Aesthetics and Art Criticism, 66(2), 149–159. https://doi.org/10.1111/j.1540-6245.2008.00295.x
Hurk, J. van den, Van Baelen, M., & Op de Beeck, H. P. (2017). Development of visual category selectivity in ventral visual cortex does not require visual experience. Proceedings of the National Academy of Sciences, 114(22), E4501–E4510. https://doi.org/10.1073/pnas.1612862114
James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., & Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 40(10), 1706–1714. https://doi.org/10.1016/s0028-3932(02)00017-9
Kennedy, J. M. (1993). Drawing and the blind: Pictures to touch. Yale University Press.
Kennedy, J. M. (1997). How the blind draw. Scientific American, 276(1), 76–81. https://doi.org/10.1038/scientificamerican0197-76
Kennedy, J. M. (2000). Recognizing outline pictures via touch: Alignment theory. In M. A. Heller (Ed.), Touch, representation and blindness (pp. 67–99). Oxford University Press Oxford. https://doi.org/10.1093/acprof:oso/9780198503873.003.0003
Kennedy, J. M., & Bai, J. (2002). Haptic pictures: Fit judgments predict identification, recognition memory, and confidence. Perception, 31(8), 1013–1026. https://doi.org/10.1068/p3259
Kennedy, J. M., & Domander, R. (1984). Pictorial foreground/background reversal reduces tactual recognition by blind subjects. Journal of Visual Impairment & Blindness, 78(5), 215–216. https://doi.org/10.1177/0145482X8407800507
Kennedy, J. M., & Juricevic, I. (2006). Form, projection and pictures for the blind. In M. A. Heller & S. Ballesteros (Eds.), Touch and blindness (pp. 73–93). Psychology Press. https://www.psycnet.org/record/2005-12992-004
Kiefer, M., Kuhnke, P., & Hartwigsen, G. (2023). Distinguishing modality-specificity at the representational and input level: A commentary on Calzavarini (2023). Language, Cognition and Neuroscience, 1–5. https://doi.org/10.1016/j.brainres.2008.07.088
Kim, S., & James, T. W. (2010). Enhanced effectiveness in visuo-haptic object-selective brain regions with increasing stimulus salience. Human Brain Mapping, 31(5), 678–693. https://doi.org/10.1080/23273798.2023.2209928
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17 (1), 26–49. https://doi.org/10.1016/j.tics.2012.10.011
Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148–1160. https://doi.org/10.1038/s41593-018-0210-5
Lacey, S., Peters, A., & Sathian, K. (2007). Cross-modal object recognition is viewpoint-independent. PloS One, 2(9), e890. https://doi.org/10.1371/journal.pone.0000890
Lacey, S., & Sathian, K. (2014). Visuo-haptic multisensory object recognition, categorization, and representation. Frontiers in Psychology, 5, 730. https://doi.org/10.3389/fpsyg.2014.00730
Lawson, R. (2009). A comparison of the effects of depth rotation on visual and haptic three-dimensional object recognition. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 911. https://doi.org/10.1037/a0015025
Lopes, D. (1996). Understanding pictures. Clarendon Press. https://books.google.it/books?id=7CaQDwAAQBAJ
Makin, T. R., & Krakauer, J. W. (2023). Against cortical reorganisation. Elife, 12, e84716. https://doi.org/10.7554/eLife.84716
Matthen, M., & Cohen, J. (2020). Many Molyneux questions. Australasian Journal of Philosophy, 98(1), 47–63. https://doi.org/10.1080/00048402.2019.1603246
Mattioni, S., Rezk, M., Battal, C., Bottini, R., Cuculiza Mendoza, K. E., Oosterhof, N. N., & Collignon, O. (2020). Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind. Elife, 9, e50732. https://doi.org/10.7554/eLife.50732
McKyton, A., Ben-Zion, I., Doron, R., & Zohary, E. (2015). The limits of shape recognition following late emergence from blindness. Current Biology, 25(18), 2373–2378. https://doi.org/10.1016/j.cub.2015.06.040
Murray, M. M., Matusz, P. J., & Amedi, A. (2015). Neuroplasticity: Unexpected consequences of early blindness. Current Biology, 25(20), R998–R1001. https://doi.org/10.1016/j.cub.2015.08.054
Nanay, B. (2020). Molyneux’s question and interpersonal variations in multimodal mental imagery among blind subjects. In G. Ferretti & B. Glenney (Eds.), Molyneux’s question and the history of philosophy (pp. 259–265). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9780429020377-24/molyneux-question-interpersonal-variations-multimodal-mental-imagery-among-blind-subjects-bence-nanay
Nanay, B. (2022). What do we see in pictures? The sensory individuals of picture perception. Philosophical Studies, 179(12), 3729–3746. https://doi.org/10.1007/s11098-022-01864-9
Nanay, B. (2023). Mental imagery: Philosophy, psychology, neuroscience. Oxford University Press.
Newell, F. N., Ernst, M. O., Tjan, B. S., & Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition. Psychological Science, 12(1), 37–42. https://doi.org/10.1111/1467-9280.00307
Norman, J. F., Norman, H. F., Clayton, A. M., Lianekhammy, J., & Zielke, G. (2004). The visual and haptic perception of natural object shape. Perception & Psychophysics, 66, 342–351. https://doi.org/10.3758/BF03194883
Occelli, V. (2020). Molyneux’s question and neuroscience of vision. In G. Ferretti & B. Glenney (Eds.), Molyneux’s question and the history of philosophy (pp. 216–234). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9780429020377-20/molyneux-question-neuroscience-vision-valeria-occelli
Orlov, T., Raveh, M., McKyton, A., Ben-Zion, I., & Zohary, E. (2021). Learning to perceive shape from temporal integration following late emergence from blindness. Current Biology, 31(14), 3162–3167. https://doi.org/10.1016/j.cub.2021.04.059
Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445. https://doi.org/10.1109/TOH.2010.25
Pawluk, D., Kitada, R., Abramowicz, A., Hamilton, C., & Lederman, S. J. (2010). Figure/ground segmentation via a haptic glance: Attributing initial finger contacts to objects or their supporting surfaces. IEEE Transactions on Haptics, 4(1), 2–13. https://doi.org/10.1016/s0079-6123(01)34028-1
Peelen, M. V., & Downing, P. E. (2017). Category selectivity in human visual cortex: Beyond visual object recognition. Neuropsychologia, 105, 177–183. https://doi.org/10.1016/j.neuropsychologia.2017.03.033
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W.-H. C., Cohen, L., Guazzelli, M., & Haxby, J. V. (2004). Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences, 101(15), 5658–5663. https://doi.org/10.1073/pnas.0400707101
Plaisier, M. A., Tiest, W. M. B., & Kappers, A. M. (2008). Haptic pop-out in a hand sweep. Acta Psychologica, 128(2), 368–377. https://doi.org/10.1016/j.actpsy.2008.03.011
Plaisier, M. A., Tiest, W. M. B., & Kappers, A. M. L. (2009). Salient features in 3-d haptic shape perception. Attention, Perception & Psychophysics, 71(2), 421–430. https://doi.org/10.3758/APP.71.2.421
Plaisier, M. A., Van Polanen, V., & Kappers, A. M. (2017). The role of connectedness in haptic object perception. Scientific Reports, 7 (1), 43868. https://doi.org/10.1038/srep43868
Ricciardi, E., Bonino, D., Pellegrini, S., & Pietrini, P. (2014). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neuroscience & Biobehavioral Reviews, 41, 64–77. https://doi.org/10.1016/j.neubiorev.2013.10.006
Ricciardi, E., & Pietrini, P. (2024). The supramodality “spillover” from neuroscience to cognitive sciences: A commentary on Calzavarini (2024). Language, Cognition and Neuroscience, 39(7), 867–871. https://doi.org/10.1080/23273798.2023.2218502
Schiller, P. H., & Carvey, C. E. (2005). The hermann grid illusion revisited. Perception, 34(11), 1375–1397. https://doi.org/10.1068/p5447
Stoesz, M. R., Zhang, M., Weisser, V. D., Prather, S., Mao, H., & Sathian, K. (2003). Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks. International Journal of Psychophysiology, 50(1-2), 41–49. https://doi.org/10.1016/s0167-8760(03)00123-5
Tian, S., Chen, L., Wang, X., Li, G., Fu, Z., Ji, Y., Lu, J., Wang, X., Shan, S., & Bi, Y. (2024). Vision matters for shape representation: Evidence from sculpturing and drawing in the blind. Cortex, 174, 241–255. https://doi.org/10.1016/j.cortex.2024.02.016
Tinti, C., Chiesa, S., Cavaglià, R., Dalmasso, S., Pia, L., & Schmidt, S. (2018). On my right or on your left? Spontaneous spatial perspective taking in blind people. Consciousness and Cognition, 62, 1–8. https://doi.org/10.1016/j.concog.2018.03.016
Voltolini, A. (2015). A syncretistic theory of depiction. Palgrave. https://doi.org/10.1057/9781137263292
Voltolini, A. (2020a). Different kinds of fusion experiences. Review of Philosophy and Psychology, 11(1), 203–222. https://doi.org/10.1007/s13164-019-00456-7
Voltolini, A. (2020b). Qua seeing-in, pictorial experience is a superstrongly cognitively penetrated perception. Kunstiteaduslikke Uurimusi, 29(03+ 04), 13–30. https://www.ceeol.com/search/article-detail?id=925675#:~:text=By%20’superstrongly%20cognitively%20penetrated’%2C,a%20concept%20is%20needed%20to
Walton, K. L. (1993). Mimesis as make-believe: On the foundations of the representational arts. Harvard University Press.
Wittgenstein, L. (2009). Philosophical investigations. John Wiley & Sons.
Wollheim, R. (1980). Seeing-as, seeing-in, and pictorial representation. Art and its objects, 2, 205–226. https://www.cambridge.org/core/books/abs/art-and-its-objects/seeingas-seeingin-and-pictorial-representation/A00A989B987FE3EA96A6F941B141616D
Wollheim, R. (1987). Painting as an art. Princeton University Press. https://doi.org/10.2307/jj.5425922
Wollheim, R. (1998). On pictorial representation. The Journal of Aesthetics and Art Criticism, 56(3), 217–226. https://doi.org/10.2307/432361
Wollheim, R. (2003a). What makes representational painting truly visual? Aristotelian Society Supplementary Volume, 77 (1), 131–147. https://doi.org/10.1111/1467-8349.00106
Wollheim, R. (2003b). In defense of seeing-in. In H. Hecht, R. Schwartz, & M. Atherton (Eds.), Looking into pictures: An interdisciplinary approach to pictorial space. The MIT Press. https://doi.org/10.7551/mitpress/4337.003.0004
Woods, A. T., Moore, A., & Newell, F. N. (2008). Canonical views in haptic object perception. Perception, 37 (12), 1867–1878. https://doi.org/10.1068/p6038
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Alberto Voltolini, Fabrizio Calzavarini