Abstract
The study of the neural basis of memory has advanced over the past decade. A key contributor to this memory “renaissance” has been new tools. On its face, this matches what might be described as a neuroscientific revolution stemming from the development of tools, where this revolution is largely independent of theory. In this paper, we challenge this tool revolution account by focusing on a problem that arises in applying it to this “renaissance”: it is centered around memory, but the tools were not developed for solving problems in memory science. To resolve this problem, we introduce an account that distinguishes tool development and tool uptake, and we argue that while theoretical considerations may not inform development, they do inform uptake. Acknowledging the distance between these stages of tool use draws our attention to the questions of why and how tool uptake occurs in the domains that it does.
References
Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., & Lecea, L. de. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450, 420–424. https://doi.org/10.1038/nature06310
Aravanis, A. M., Wang, L.-P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B., & Deisseroth, K. (2007). An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 4, S143–S156. https://doi.org/10.1088/1741-2560/4/3/S02
Bickle, J. (2016). Revolutions in neuroscience: Tool development. Frontiers in Systems Neuroscience, 10, 1–13. https://doi.org/10.3389/fnsys.2016.00024
Bickle, J. (2018). From microscopes to optogenetics: Ian hacking vindicated. Philosophy of Science, 85, 1065–1077. https://doi.org/10.1086/699760
Bickle, J. (2003). Philosophy and neuroscience: A ruthlessly reductive account (First). Kluwer Academic. https://doi.org/10.1007/978-94-010-0237-0
Bollhagen, A. (2021). The inchworm episode: Reconstituting the phenomenon of kinesin motility. European Journal for Philosophy of Science, 11, 50. https://doi.org/10.1007/s13194-021-00358-5
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268. https://doi.org/10.1038/nn1525
Buzsáki, G., McKenzie, S., & Davachi, L. (2022). Neurophysiology of remembering. Annual Review of Psychology, 73, 187–215. https://doi.org/10.1146/annurev-psych-021721-110002
Chang, E. H., Argyelan, M., Aggarwal, M., Chandon, T.-S. S., Karlsgodt, K. H., Mori, S., & Malhotra, A. K. (2017). The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon mi- croscopy of CLARITY intact brains. NeuroImage, 147, 253–261. https://doi.org/10.1016/j.neuroimage.2016.11.068
Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., Mirzabekov, J. J., Zalocusky, K. A., Mattis, J., Denisin, A. K., Pak, S., Bernstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., & Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497, 332–337. https://doi.org/10.1038/nature12107
Colaço, D. (2020). Recharacterizing scientific phenomena. European Journal for Philosophy of Science, 10, 14. https://doi.org/10.1007/s13194-020-0279- z
Colaço, D. (2018). Rethinking the role of theory in exploratory experimentation. Biology & Philosophy, 33, 38. https://doi.org/10.1007/s10539-018-9648-9
Colaço, D. (2021). How do tools obstruct (and facilitate) integration in neuroscience? In J. Bickle, C. Craver, & A. Barwich (Eds.), The Tools of Neuroscience Experiment (pp. 221–238). Routledge.
Colapinto, J. (2015). Lighting the brain. The New Yorker. https://www.newyorker.com/magazine/2015/05/18/lighting-the-brain
Craver, C. F. (2021). Toward an epistemology of intervention: Optogenetics and maker’s knowledge. In J. Bicke, C. Craver, & A. Barwich (Eds.), The Tools of Neuroscience Experiment (pp. 152–175). Routledge.
Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences (p. 228).
Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neuroscience, 18, 1213–1225. https://doi.org/10.1038/nn.4091
Deisseroth, K. (2016). A look inside the brain. Scientific American, 315, 30–37. https://doi.org/10.1038/scientificamerican1016-30
Ertürk, A., Becker, K., Jährling, N., Mauch, C. P., Hojer, C. D., Egen, J. G., Hellal, F., Bradke, F., Sheng, M., & Dodt, H.-U. (2012). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protocols, 7, 1983–1995. https://doi.org/10.1038/nprot.2012.119
Ertürk, A., Pan, C., Cai, R., Quacquarelli, F. P., Gasemigharagoz, A., & Erturk, A. (2016). Whole organ and organism tissue clearing by uDISCO. Protocol Exchange, 1–7. https://doi.org/10.1038/protex.2016.055
Feest, U. (2010). Concepts as tools in the experimental generation of knowledge in cognitive neuropsychology. Spontaneous Generations: A Journal for the History and Philosophy of Science, 4, 173–190. https://doi.org/10.4245/sponge.v4i1.11938
Gallistel, C. R. (2017). The coding question. Trends in Cognitive Sciences, 21, 498–508. https://doi.org/10.1016/j.tics.2017.04.012
Gershman, S. J. (2023). The molecular memory code and synaptic plasticity: A synthesis. Biosystems, 224, 104825. https://doi.org/10.1016/j.biosystems.2022.104825
Gold, A. R., & Glanzman, D. L. (2021). The central importance of nuclear mechanisms in the storage of memory. Biochemical and Biophysical Research Communications, 564, 103–113. https://doi.org/10.1016/j.bbrc.2021.04.125
Goshen, I. (2014). The optogenetic revolution in memory research. Trends in Neurosciences, 37, 511–522. https://doi.org/10.1016/j.tins.2014.06.002
Gradinaru, V., Treweek, J., Overton, K., & Deisseroth, K. (2018). Hydrogel-tissue chemistry: Principles and applications. Annual Review of Biophysics, 47, 355–376. https://doi.org/10.1146/annurev-biophys-070317-032905
Haueis, P. (2021). A generalized patchwork approach to scientific concepts. The British Journal for the Philosophy of Science, 1–41. https://doi.org/10.1086/716179
Horvath, P., & Barrangou, R. (2010). CRISPR/cas, the immune system of bacteria and archaea. Science, 327, 167–170. https://doi.org/10.1126/science.1179555
Josselyn, S. A., Köhler, S., & Frankland, P. W. (2017). Heroes of the engram. The Journal of Neuroscience, 37, 4647–4657. https://doi.org/10.1523/JNEUROSCI.0056-17.2017
Kim, C. K., Adhikari, A., & Deisseroth, K. (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 18, 222–235. https://doi.org/10.1038/nrn.2017.15
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385. https://doi.org/10.1038/nature11028
Loftus, E. (2004). Dispatch from the (un)civil memory wars. The Lancet, 364, 20–21. https://doi.org/10.1016/S0140-6736(04)17626-5
Maguire, E. A. (2022). Does memory research have a realistic future? Trends in Cognitive Sciences, 26, 1043–1046. https://doi.org/10.1016/j.tics.2022.07.006
Mollon, J. D., Danilova, M. V., & Zhuravlev, A. V. (2023). A possible mechanism of neural read-out from a molecular engram. Neurobiology of Learning and Memory, 200, 107748. https://doi.org/10.1016/j.nlm.2023.107748
Morrison, D. J., Rashid, A. J., Yiu, A. P., Yan, C., Frankland, P. W., & Josselyn, S. A. (2016). Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiology of Learning and Memory, 135, 91–99. https://doi.org/10.1016/j.nlm.2016.07.007
Nader, K. (2015). Reconsolidation and the dynamic nature of memory. Cold Spring Harbor Perspectives in Biology, 7, a021782. https://doi.org/10.1101/cshperspect.a021782
Park, Y.-G., Sohn, C. H., Chen, R., McCue, M., Yun, D. H., Drummond, G. T., Ku, T., Evans, N. B., Oak, H. C., Trieu, W., Choi, H., Jin, X., Lilascharoen, V., Wang, J., Truttmann, M. C., Qi, H. W., Ploegh, H. L., Golub, T. R., Chen, S.-C., ... Chung, K. (2019). Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nature Biotechnology, 37, 73–83. https://doi.org/10.1038/nbt.4281
Pavlova, I. P., Shipley, S. C., Lanio, M., Hen, R., & Denny, C. A. (2018). Optimization of immunolabeling and clearing tech- niques for indelibly labeled memory traces. Hippocampus, 28, 523–535. https://doi.org/10.1002/hipo.22951
Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M., Redondo, R. L., Ryan, T. J., & Tonegawa, S. (2013). Creating a false memory in the hippocampus. Science, 341, 387–391. https://doi.org/10.1126/science.1239073
Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X., & Tonegawa, S. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513, 426–430. https://doi.org/10.1038/nature13725
Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., & Tessier-Lavigne, M. (2014). iDISCO: A simple, rapid method to immuno- label large tissue samples for volume imaging. Cell, 159, 896–910. https://doi.org/10.1016/j.cell.2014.10.010
Robins, S. (2023). The 21st century engram. WIREs Cognitive Science, 14, 1–15. https://doi.org/10.1002/wcs.1653
Robins, S. K. (2016). Optogenetics and the mechanism of false memory. Synthese, 193, 1561–1583. https://doi.org/10.1007/s11229-016-1045-9
Robins, S. K. (2018). Memory and optogenetic intervention: Separating the engram from the ecphory. Philosophy of Science, 85, 1078–1089. https://doi.org/10.1086/699692
Roy, D. S., Muralidhar, S., Smith, L. M., & Tonegawa, S. (2017). Silent memory engrams as the basis for retrograde amnesia. Proceedings of the National Academy of Sciences, 114, 9972–9979. https://doi.org/10.1073/pnas.1714248114
Roy, D. S., Park, Y.-G., Kim, M. E., Zhang, Y., Ogawa, S. K., DiNapoli, N., Gu, X., Cho, J. H., Choi, H., Kamentsky, L., Martin, J., Mosto, O., Aida, T., Chung, K., & Tonegawa, S. (2022). Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 13, 1799. https://doi.org/10.1038/s41467-022-29384-4
Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A., & Tonegawa, S. (2015). Engram cells retain memory under retrograde amnesia. Science, 348, 1007–1013. https://doi.org/10.1126/science.aaa5542
Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 773–786. https://doi.org/10.1098/rstb.2007.2087
Silva, A. (2021). Dissemination and adaptiveness as key variables in tools that fuel scientific revolutions. In J. Bickle, C. Craver, & A. Barwich (Eds.), The Tools of Neuroscience Experiment (pp. 137–151). Routledge.
Sullivan, J. A. (2018). Optogenetics, pluralism, and progress. Philosophy of Science, 85, 1090–1101. https://doi.org/10.1086/699724
Takeuchi, T., Duszkiewicz, A. J., & Morris, R. G. M. (2014). The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130288. https://doi.org/10.1098/rstb.2013.0288
Tanaka, K. Z., & McHugh, T. J. (2018). The hippocampal engram as a memory index. Journal of Experimental Neuroscience, 12, 117906951881594. https://doi.org/10.1177/1179069518815942
Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397, 613–616. https://doi.org/10.1038/17605
Zhou, Y., Won, J., Karlsson, M. G., Zhou, M., Rogerson, T., Balaji, J., Neve, R., Poirazi, P., & Silva, A. J. (2009). CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neuroscience, 12, 1438–1443. https://doi.org/10.1038/nn.2405
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 David Colaço, Sarah Robins