Dynamic attentional mechanisms of creative cognition


Creative cognition
Top-down attention
Bottom-up attention
Internal attention
External attention

How to Cite

Dynamic attentional mechanisms of creative cognition. (2023). Philosophy and the Mind Sciences, 4. https://doi.org/10.33735/phimisci.2023.10020


In popular imagination creativity requires us to surrender control. Yet, attention is at the heart of control, and many studies show attention to play a key role in the creative process. This is partly due to the selective nature of attention—creative cognition consists of two phases, idea generation and idea evaluation, and selective processes are essential for both phases. Here, we investigate attentional (i.e., selective) mechanisms underlying each phase, using the framework of two major attention taxonomies: top-down/bottom-up and internal/external attention. We argue that creative cognition is supported by a dynamic interplay between the typically opposing sides of each taxonomy. Further, we argue that this dynamic relationship is reflected in interactions across three large-scale brain networks: the default mode (DMN), frontoparietal control (FPN), and salience (SN) networks. Our review of the evidence suggests that creative cognition is best achieved through the flexible use of multiple forms of attention, rather than through reduced attention. We thus propose a two-dimensional space, including one dimension for top-down/bottom-up attention and another for internal/external attention, which can sufficiently capture the flexibility and diversity of attentional mechanisms underlying different stages and components of creative cognition.



Abraham, A. (2018). The forest versus the trees: Creativity, cognition and imagination. In R. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 195–210). Cambridge University Press. https://doi.org/10.1017/9781316556238.012

Agnoli, S., Vanucci, M., Pelagatti, C., & Corazza, G. E. (2018). Exploring the link between mind wandering, mindfulness, and creativity: A multidimensional approach. Creativity Research Journal, 30(1), 41–53. https://doi.org/10.1080/10400419.2018.1411423

Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23(2), 109–118. https://doi.org/10.1080/10400419.2011.571183

Ansburg, P. I., & Hill, K. (2003). Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences, 34(7), 1141–1152. https://doi.org/10.1016/S0191-8869(02)00104-6

Aziz‐Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908–916. https://doi.org/10.1002/hbm.20554

Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 1117–1122. https://doi.org/10.1177/0956797612446024

Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20(4), 723–767. https://doi.org/10.1017/S0140525X97001611

Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210–224. https://doi.org/10.1016/j.tins.2011.02.003

Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95. https://doi.org/10.1016/j.tics.2015.10.004

Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., Kane, M. J., & Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 115(5), 1087–1092. https://doi.org/10.1073/pnas.1713532115

Beaty, R. E., Seli, P., & Schacter, D. L. (2019). Network neuroscience of creative cognition: Mapping cognitive mechanisms and individual differences in the creative brain. Current Opinion in Behavioral Sciences, 27, 22–30. https://doi.org/10.1016/j.cobeha.2018.08.013

Benedek, M. (2018). Internally directed attention in creative cognition. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (1st ed., pp. 180–194). Cambridge University Press. https://doi.org/10.1017/9781316556238.011

Benedek, M., Bergner, S., Könen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49(12), 3505–3511. https://doi.org/10.1016/j.neuropsychologia.2011.09.004

Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: The role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences, 27, 116–122. https://doi.org/10.1016/j.cobeha.2018.11.002

Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6(1), 22959. https://doi.org/10.1038/srep22959

Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83. https://doi.org/10.1016/j.intell.2014.05.007

Bengtsson, S. L., Csıkszentmihalyi, M., & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19(5), 830–842. https://doi.org/10.1162/jocn.2007.19.5.830v

Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1–12. https://doi.org/10.3389/fpsyg.2015.01195

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s Default Network. Annals of the New York Academy of Sciences, 1124(1), 1–38. https://doi.org/10.1196/annals.1440.011

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. https://doi.org/10.1126/science.1138071

Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67(6), 380–400. https://doi.org/10.1037/h0040373

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacological Reviews, 71(3), 316–344. https://doi.org/10.1124/pr.118.017160

Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499–506. https://doi.org/10.1037/0022-3514.85.3.499

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106(21), 8719–8724. https://doi.org/10.1073/pnas.0900234106

Chrysikou, E. G. (2018). The costs and benefits of cognitive control for creativity. In R. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 195–210). Cambridge University Press. https://doi.org/10.1017/9781316556238.018

Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89. https://doi.org/10.1080/17588928.2013.768221

Chrysikou, E. G., Weber, M. J., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341–355. https://doi.org/10.1016/j.neuropsychologia.2013.10.021

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101. https://doi.org/10.1146/annurev.psych.093008.100427

Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19. https://doi.org/10.1093/analys/58.1.7

Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071

Connor, C. E., Egeth, H. E., & Yantis, S. (2004). Visual attention: Bottom-up versus top-down. Current Biology, 14(19), 850–852. https://doi.org/10.1016/j.cub.2004.09.041

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

De Pisapia, N., Bacci, F., Parrott, D., & Melcher, D. (2016). Brain networks for visual creativity: A functional connectivity study of planning a visual artwork. Scientific Reports, 6(1), 39185. https://doi.org/10.1038/srep39185

Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822. https://doi.org/10.1037/a0019749

Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321–330. https://doi.org/10.1016/j.neuropsychologia.2014.05.024

Edl, S., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). Creativity and the Stroop interference effect. Personality and Individual Differences, 69, 38–42. https://doi.org/10.1016/j.paid.2014.05.009

Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 1783–1794. https://doi.org/10.1016/j.neuroimage.2011.08.008

Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. Basic Books. https://psycnet.apa.org/record/2002-02521-000

Fox, K. C. R., & Christoff, K. (2018). The Oxford handbook of spontaneous thought: Mind-wandering, creativity, and dreaming. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190464745.001.0001

Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611–621. https://doi.org/10.1016/j.neuroimage.2015.02.039

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102

Gable, S. L., Hopper, E. A., & Schooler, J. W. (2019). When the muses strike: Creative ideas of physicists and writers routinely occur during mind wandering. Psychological Science, 30(3), 396–404. https://doi.org/10.1177/0956797618820626

Gaynes, R. (2017). The discovery of penicillin—new insights after more than 75 years of clinical use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556

German, T. P., & Defeyter, M. A. (2000). Immunity to functional fixedness in young children. Psychonomic Bulletin & Review, 7(4), 707–712. https://doi.org/10.3758/BF03213010

Girn, M., Mills, C., Roseman, L., Carhart-Harris, R., & Christoff, K. (2020). Updating the dynamic framework of thought: Creativity and psychedelics. NeuroImage, 116726, 116726. https://doi.org/10.1016/j.neuroimage.2020.116726

Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12(6), 516–522. https://doi.org/10.1111/1467-9280.00395

Gonen-Yaacovi, G., Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 1–22. https://doi.org/10.3389/fnhum.2013.00465

Gong, Z., Miao, K., Liu, X., Luo, M., Yu, Y., & Chen, Z. (2023). A positive association between working memory capacity and human creativity: A meta-analytic evidence. Journal of Intelligence, 11(1), 15. https://doi.org/10.3390/jintelligence11010015

Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., Aboody, R., Fung, H., & Dahl, R. E. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proceedings of the National Academy of Sciences, 114(30), 7892–7899. https://doi.org/10.1073/pnas.1700811114

Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487

Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill. https://psycnet.apa.org/record/1967-35015-000

Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 38. https://doi.org/10.3389/fnhum.2012.00038

Herd, S. A., Banich, M. T., & O’reilly, R. C. (2006). Neural mechanisms of cognitive control: An integrative model of Stroop task performance and fMRI data. Journal of Cognitive Neuroscience, 18(1), 22–32. https://doi.org/10.1162/089892906775250012

Heuvel, van den, M. P., & Pol, H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008

Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J. H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81(7), 2288–2303. https://doi.org/10.3758/s13414-019-01846-w

Hugdahl, K. (2009). “Hearing voices”: Auditory hallucinations as failure of top‐down control of bottom‐up perceptual processes. Scandinavian Journal of Psychology, 50(6), 553–560. https://doi.org/10.1111/j.1467-9450.2009.00775.x

Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577. https://doi.org/10.1016/j.pragma.2004.06.008

James, W. (1890). The principles of psychology (Vol. 1). Henry Holt. https://doi.org/10.1037/10538-000

Jennings, C. D. (2012). The subject of attention. Synthese, 189, 535–554. https://doi.org/10.1007/s11229-012-0164-1

Jennings, C. D. (2020). The attending mind. Cambridge University Press. https://doi.org/10.1017/9781108164238

Johansen, M. W., & Misfeldt, M. (2020). Material representations in mathematical research practice. Synthese, 197(9), 3721–3741. https://doi.org/10.1007/s11229-018-02033-4

Josipovic, Z., Dinstein, I., Weber, J., & Heeger, D. J. (2012). Influence of meditation on anti-correlated networks in the brain. Frontiers in Human Neuroscience, 5, 183. https://doi.org/10.3389/fnhum.2011.00183

Kasof, J. (1997). Creativity and breadth of attention. Creativity Research Journal, 10(4), 303–315. https://doi.org/10.1207/s15326934crj1004_2

Katsuki, F., & Constantinidis, C. (2014). Bottom-up and top-down attention: Different processes and overlapping neural systems. The Neuroscientist, 20(5), 509–521. https://doi.org/10.1177/1073858413514136

Kaufman, A. B., Kornilov, S. A., Bristol, A. S., Tan, M., & Grigorenko, E. L. (2010). The neurobiological foundation of creative cognition. In J. Kaufman & R. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 216–232). Cambridge University Press. https://doi.org/10.1017/9781316979839

Kirkpatrick, S., Gelatt, C. D., Jr, & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

Kirsh, D. (2014). The importance of chance and interactivity in creativity. Pragmatics & Cognition, 22(1), 5–26. https://escholarship.org/uc/item/9zv112f5

Kleinmintz, O. M., Ivancovsky, T., & Shamay-Tsoory, S. G. (2019). The two-fold model of creativity: The neural underpinnings of the generation and evaluation of creative ideas. Current Opinion in Behavioral Sciences, 27, 131–138. https://doi.org/10.1016/j.cobeha.2018.11.004

Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PloS One, 3(2), 1679. https://doi.org/10.1371/journal.pone.0001679

Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., Rizik-Baer, D. A., & Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2(1), 1–8. https://doi.org/10.1038/srep00834

Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 3351–3372. https://doi.org/10.1002/hbm.22849

Loui, P., & Guetta, R. E. (2019). Music and attention, executive function, and creativity. In M. H. Thaut & D. A. Hodges (Eds.), The Oxford handbook of music and the brain (pp. 263–284). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.001.0001

Maglio, P., & Kirsh, D. (1992). Some epistemic benefits of action: Tetris, a case study. In J. Kruschke (Ed.), Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society (Vol. 14, p. 224). Lawrence Erlbaum Associates, Inc. https://philpapers.org/archive/DAVSEB.pdf

Marghetis, T., Samson, K., & Landy, D. (2019). The complex system of mathematical creativity: Modularity, burstiness, and the network structure of how experts use inscriptions. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Conference of the Cognitive Science Society (pp. 763–769). Cognitive Science Society. https://cogsci.mindmodeling.org/2019/papers/0148/0148.pdf

Mednick, S. A., & Mednick, M. T. (1967). Examiner’s manual, Remote Associates Test: College and adult forms 1 and 2. Houghton Mifflin. https://worldcat.org/en/title/2865561

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667. https://doi.org/10.1007/s00429-010-0262-0

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114

Monroe, J., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M., & Weigel, D. (2022). Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602, 101–105. https://doi.org/10.1038/s41586-021-04269-6

Mooneyham, B. W., & Schooler, J. W. (2013). The costs and benefits of mind-wandering: A review. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 67(1), 11–18. https://doi.org/10.1037/a0031569

Nobre, A. C., & Kastner, S. (2014). Attention: Time capsule 2013. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 1201–1222). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199675111.001.0001

Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39(1), 36–45. https://doi.org/10.1016/j.intell.2010.11.002

Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., Santos, A. C., Crippa, J. A. S., Hallak, J. E. C., Ribeiro, S., & Araujo, D. B. de. (2015). The psychedelic state induced by Ayahuasca modulates the activity and connectivity of the default mode network. PLOS ONE, 10(2), 0118143. https://doi.org/10.1371/journal.pone.0118143

Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P., & Manzano, Ö. (2015). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26(7), 3052–3063. https://doi.org/10.1093/cercor/bhv130

Poincaré, H. (2015). The foundations of science: Science and hypothesis, the value of science, science and method (G. Halstead, Trans.). Cambridge University Press. https://doi.org/10.1017/CBO9781107252950

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676

Ramalho, G., & Ganascia, J.-G. (1994). Simulating creativity in jazz performance. Proceedings of the Twelfth AAAI National Conference on Artificial Intelligence, 108–113. https://doi.org/10.5555/2891730.2891747

Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128(12), 2882–2890. https://doi.org/10.1093/brain/awh577

Rosen, D. S., Oh, Y., Erickson, B., Zhang, F., Kim, Y. E., & Kounios, J. (2020). Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. NeuroImage, 213, 116632. https://doi.org/10.1016/j.neuroimage.2020.116632

Rothenberg, A. (1995). Creative cognitive processes in Kekulé’s discovery of the structure of the benzene molecule. The American Journal of Psychology, 108(3), 419–438. https://doi.org/10.2307/1422898

Runco, M. A., & Basadur, M. (1993). Assessing ideational and evaluative skills and creative styles and attitudes. Creativity and Innovation Management, 2(3), 166–173. https://doi.org/10.1111/j.1467-8691.1993.tb00088.x

Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D., & Sayette, M. A. (2011). Meta-awareness, perceptual decoupling and the wandering mind. Trends in Cognitive Sciences, 15(7), 319–326. https://doi.org/10.1016/j.tics.2011.05.006

Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185. https://doi.org/10.1016/j.neuropsychologia.2010.11.020

Shi, L., Sun, J., Xia, Y., Ren, Z., Chen, Q., Wei, D., Yang, W., & Qiu, J. (2018). Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Biological Psychology, 135, 102–111. https://doi.org/10.1016/j.biopsycho.2018.03.005

Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27(4), 599–606. https://doi.org/10.1007/s10648-015-9299-1

Simonton, D. K. (1999). Creativity as blind variation and selective retention: Is the creative process Darwinian? Psychological Inquiry, 10(4), 309–328. https://doi.org/10.1207/S15327965PLI1004_4

Smallwood, J., McSpadden, M., & Schooler, J. W. (2007). The lights are on but no one’s home: Meta-awareness and the decoupling of attention when the mind wanders. Psychonomic Bulletin & Review, 14(3), 527–533. https://doi.org/10.3758/BF03194102

Torrance, E. P. (1966). Torrance tests of creative thinking. Norms-technical manual. Research edition. Verbal tests, forms A and B. Figural tests, forms A and B. Personnel Press. https://worldcat.org/en/title/714040431

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5

Uddin, L. Q. (2017). Salience network of the human brain. Academic Press. https://doi.org/10.1016/C2015-0-01862-7

Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3(1), 57–59. https://doi.org/10.1037/a0014781

Verschooren, S., Schindler, S., Raedt, R., & Pourtois, G. (2019). Switching attention from internal to external information processing: A review of the literature and empirical support of the resource sharing account. Psychonomic Bulletin & Review, 26(2), 468–490. https://doi.org/10.3758/s13423-019-01568-y

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. https://doi.org/10.1152/jn.90355.2008

Wallas, G. (1926). The art of thought. Harcourt, Brace; Company. https://psycnet.apa.org/record/1926-10372-000

Zabelina, D. L. (2018). Attention and creativity. In O. Vartanian & R. E. Jung (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 161–179). Cambridge University Press. https://doi.org/10.1017/9781316556238.010

Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 86–93. https://doi.org/10.1016/j.conb.2016.06.014

Zabelina, D. L., Friedman, N. P., & Andrews-Hanna, J. (2019). Unity and diversity of executive functions in creativity. Consciousness and Cognition, 68, 47–56. https://doi.org/10.1016/j.concog.2018.12.005

Zabelina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. Neuropsychologia, 118, 20–28. https://doi.org/10.1016/j.neuropsychologia.2018.02.014

Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4(3), 136–143. https://doi.org/10.1037/a0017379

Zabelina, D. L., Saporta, A., & Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44(3), 488–498. https://doi.org/10.3758/s13421-015-0569-4

Zedelius, C. M., & Schooler, J. W. (2020). Capturing the dynamics of creative daydreaming. In D. D. Preiss, D. Cosmelli, & J. C. Kaufman (Eds.), Creativity and the wandering mind (pp. 55–72). Academic Press. https://doi.org/10.1016/B978-0-12-816400-6.00003-1

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Shadab Tabatabaeian, Carolyn Jennings