Predictive processing as a systematic basis for identifying the neural correlates of consciousness


prediction error minimization
active inference
neural correlates

How to Cite

Hohwy, J., & Seth, A. (2020). Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences, 1(II).


The search for the neural correlates of consciousness is in need of a systematic, principled foundation that can endow putative neural correlates with greater predictive and explanatory value. Here, we propose the predictive processing framework for brain function as a promising candidate for providing this systematic foundation. The proposal is motivated by that framework’s ability to address three general challenges to identifying the neural correlates of consciousness, and to satisfy two constraints common to many theories of consciousness. Implementing the search for neural correlates of consciousness through the lens of predictive processing delivers strong potential for predictive and explanatory value through detailed, systematic mappings between neural substrates and phenomenological structure. We conclude that the predictive processing framework, precisely because it at the outset is not itself a theory of consciousness, has significant potential for advancing the neuroscience of consciousness.


Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262.

Alilović, J., Timmermans, B., Reteig, L. C., van Gaal, S., & Slagter, H. A. (2019). No evidence that predictions and attention modulate the first feedforward sweep of cortical information processing. Cerebral Cortex, 29(5), 2261–2278.

Allen, M., Levy, A., Parr, T., & Friston, K. J. (2019). In the body’s eye: The computational anatomy of interoceptive inference. bioRxiv, 603928.

Apps, M. A. J., & Tsakiris, M. (2014). The free-energy self: A predictive coding account of self-recognition. Neuroscience & Biobehavioral Reviews, 41, 85–97.

Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(2), 737–746.

Aru, J., Rutiku, R., Wibral, M., Singer, W., & Melloni, L. (2016). Early effects of previous experience on conscious perception. Neuroscience of Consciousness, 2016(1).

Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E., & Bachmann, T. (2019). Coupling the state and contents of consciousness. Frontiers in Systems Neuroscience, 13.

Ashby, W. R. (1954). Design for a brain. Wiley.

Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.

Bachmann, T. (2012). How to begin to overcome the ambiguity present in differentiation between contents and levels of consciousness? Frontiers in Psychology, 3.

Baltieri, M., Buckley, C. L., & Bruineberg, J. (2020). Predictions in the eye of the beholder: An active inference account of Watt governors. Artificial Life Conference Proceedings, 32, 121–129.

Barrett, A. B., Dienes, Z., & Seth, A. K. (2013). Measures of metacognition on signal-detection theoretic models. Psychological Methods, 18(4), 535–552.

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695–711.

Bayne, T. (2007). Conscious states and conscious creatures: Explanation in the scientific study of consciousness. Philosophical Perspectives, 21(1), 1–22.

Bayne, T., Cleeremans, A., & Wilken, P. (Eds.). (2009). Oxford companion to consciousness. Oxford University Press.

Bayne, T., Seth, A. K., & Massimini, M. (2020). Are there islands of awareness? Trends in Neurosciences, 43(1), 6–16.

Bechtel, W. (2007). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Taylor & Francis.

Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227–247.

Bogacz, R. (2017). A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology, 76, 198–211.

Boly, M., Garrido, M. I., Gosseries, O., Bruno, M.-A., Boveroux, P., Schnakers, C., et al. (2011). Preserved feedforward but impaired top-down processes in the vegetative state. Science, 332(6031), 858–862.

Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.-A., Noirhomme, Q., et al. (2012). Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. Journal of Neuroscience, 32(20), 7082–7090.

Brown, H., Adams, R. A., Parees, I., Edwards, M., & Friston, K. J. (2013). Active inference, sensory attenuation and illusions. Cognitive Processing, 14(4), 411–427.

Brown, R., Lau, H., & LeDoux, J. E. (2019). Understanding the higher-order approach to consciousness. Trends in Cognitive Sciences, 23(9), 754–768.

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79.

Cao, R. (2020). New labels for old ideas: Predictive processing and the interpretation of neural signals. Review of Philosophy and Psychology, 11(3), 517–546.

Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., et al. (2014). The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8.

Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford University Press.

Chalmers, D. J. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness (pp. 17–39). MIT Press.

Chalmers, D. J. (2018). The meta-problem of consciousness. Journal of Consciousness Studies, 25(9-10), 6–61.

Chang, A. Y. C., Biehl, M., Yu, Y., & Kanai, R. (2020). Information closure theory of consciousness. Frontiers in Psychology, 11.

Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.

Clark, A. (2019). Consciousness as generative entanglement. Journal of Philosophy, 116(12), 645–662.

Clark, A., Friston, K. J., & Wilkinson, S. (2019). Bayesing qualia: Consciousness as inference, not raw datum. Journal of Consciousness Studies, 26(9-10), 19–33.

Cleeremans, A. (2011). The radical plasticity thesis: How the brain learns to be conscious. Frontiers in Psychology, 2.

Cohen, M. A., & Rubenstein, J. (2020). How much color do we see in the blink of an eye? Cognition, 200, 104268.

Cole, D. M., Diaconescu, A. O., Pfeiffer, U. J., Brodersen, K. H., Mathys, C. D., Julkowski, D., et al. (2020). Atypical processing of uncertainty in individuals at risk for psychosis. NeuroImage: Clinical, 26, 102239.

Corcoran, A. W., & Hohwy, J. (2018). Allostasis, interoception, and the free energy principle: Feeling our way forward. In M. Tsakiris & H. de Preester (Eds.), The interoceptive basis of the mind (pp. 272–292). Oxford University Press.

Corlett, P. R., Horga, G., Fletcher, P. C., Alderson-Day, B., Schmack, K., & Powers, A. R. (2019). Hallucinations and strong priors. Trends in Cognitive Sciences, 23(2), 114–127.

Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford University Press.

Crick, F., & Koch, C. (1990a). Some reflections on visual awareness. Sympos Quant Biol, 953–962.

Crick, F., & Koch, C. (1990b). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.

Damasio, A. (2000). The feeling of what happens: Body and emotion in the making of consciousness. Mariner Books.

Dehaene, S. (2011). Conscious and nonconscious processes: Distinct forms of evidence accumulation? Biological Physics. Progress in Mathematical Physics, 60.

Dennett, D. C. (1991). Consciousness explained. Little, Brown & Company.

Descartes, R. (1641). Descartes: Meditations on first philosophy: With selections from the objections and replies (J. Cottingham, Ed.). Cambridge University Press.

Dijkstra, N., Ambrogioni, L., Vidaurre, D., & Gerven, M. van. (2020). Neural dynamics of perceptual inference and its reversal during imagery. eLife, 9, e53588.

Doerig, A., Schurger, A., & Herzog, M. H. (2020). Hard criteria for empirical theories of consciousness. Cognitive Neuroscience, 1–22.

Dołęga, K., & Dewhurst, J. E. (2020). Fame in the predictive brain: A deflationary approach to explaining consciousness in the prediction error minimization framework. Synthese.

Engel, A. K., Friston, K. J., & Kragic, D. (Eds.). (2016). The pragmatic turn: Toward action-oriented views in cognitive science. The MIT Press.

Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25.

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4.

Felleman, D. J., & Essen, D. C. V. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1–47.

Fernández-Espejo, D., & Owen, A. M. (2013). Detecting awareness after severe brain injury. Nature Reviews Neuroscience, 14(11), 801–809.

Fink, S. B. (2016). A deeper look at the “neural correlate of consciousness”. Frontiers in Psychology, 7.

FitzGerald, T. H. B., Schwartenbeck, P., Moutoussis, M., Dolan, R. J., & Friston, K. J. (2014). Active inference, evidence accumulation, and the urn task. Neural Computation, 27(2), 306–328.

Fleming, S. M. (2020). Awareness as inference in a higher-order state space. Neuroscience of Consciousness, 2020(1). https: //

Fleming, S. M., Maniscalco, B., Ko, Y., Amendi, N., Ro, T., & Lau, H. (2015). Action-specific disruption of perceptual confidence: Psychological Science.

Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58.

Friston, K. J. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.

Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.

Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

Friston, K. J. (2017). The mathematics of mind-time. Aeon. Retrieved from

Friston, K. J. (2018). Am I self-conscious? (Or does self-organization entail self-consciousness?). Frontiers in Psychology, 9.

Friston, K. J. (2019a). A free energy principle for a particular physics. arXiv.

Friston, K. J. (2019b). Waves of prediction. PLOS Biology, 17(10), e3000426.

Friston, K. J., Da Costa, L., Hafner, D., Hesp, C., & Parr, T. (2020a). Sophisticated inference. arXiv.

Friston, K. J., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879.

Friston, K. J., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active inference: A process theory. Neural Computation, 29(1), 1–49.

Friston, K. J., Parr, T., & Vries, B. de. (2017). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1(4), 381–414.

Friston, K. J., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 6(4), 187–214.

Friston, K. J., Schwartenbeck, P., Fitzgerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2013). The anatomy of choice: Active inference and agency. Frontiers in Human Neuroscience, 7.

Friston, K. J., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3.

Friston, K. J., Wiese, W., & Hobson, J. A. (2020b). Sentience and the origins of consciousness: From Cartesian duality to Markovian monism. Entropy, 22(5), 516.

Gold, I. (1999). Does 40-Hz oscillation play a role in visual consciousness? Consciousness and Cognition, 8(2), 186–195.

Gordon, N., Tsuchiya, N., Koenig-Robert, R., & Hohwy, J. (2019). Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLOS Biology, 17(4), e3000233.

Graaf, T. A. de, Hsieh, P.-J., & Sack, A. T. (2012). The “correlates” in neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(1), 191–197.

Graziano, M. S. A., Guterstam, A., Bio, B. J., & Wilterson, A. I. (2020). Toward a standard model of consciousness: Reconciling the attention schema, global workspace, higher-order thought, and illusionist theories. Cognitive Neuropsychology, 37(3-4), 155–172.

Graziano, M. S. A., & Webb, T. W. (2015). The attention schema theory: A mechanistic account of subjective awareness. Frontiers in Psychology, 6.

Grush, R. (2006). How to, and how not to, bridge computational cognitive neuroscience and Husserlian phenomenology of time consciousness. Synthese, 153(3), 417–450.

de Haan, E. H. F., Corballis, P. M., Hillyard, S. A., Marzi, C. A., Seth, A., Lamme, V. A. F., et al. (2020). Split-brain: What we know now and why this is important for understanding consciousness. Neuropsychology Review, 30(2), 224–233.

Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the “Orch OR” theory. Physics of Life Reviews, 11(1), 39–78.

Haun, A., & Tononi, G. (2019). Why does space feel the way it does? Towards a principled account of spatial experience. Entropy, 21(12), 1160.

Heeger, D. J. (2017). Theory of cortical function. Proceedings of the National Academy of Sciences, 114(8), 1773–1782.

Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & Lange, F. P. de. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, 11(1), 321.

Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98.

Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3.

Hohwy, J. (2013). The predictive mind. Oxford University Press.

Hohwy, J. (2015). Prediction error minimization, mental and developmental disorder, and statistical theories of consciousness. In Disturbed consciousness: New essays on psychopathology and theories of consciousness (pp. 293–324). MIT Press.

Hohwy, J. (2020a). New directions in predictive processing. Mind & Language, 35(2), 209–223.

Hohwy, J. (2020b). Self-supervision, normativity and the free energy principle. Synthese.

Hohwy, J. (2009). The neural correlates of consciousness: New experimental approaches needed? Consciousness and Cognition, 18(2), 428–438.

Hohwy, J., & Frith, C. (2004). Can neuroscience explain consciousness? Journal of Consciousness Studies, 11(7-8), 180–198.

Hohwy, J., & Michael, J. (2017). Why does any body have a self? In F. de Vignemont & A. J. T. Alsmith (Eds.), The body and the self, revisited (pp. 363–391). MIT Press.

Hohwy, J., Paton, B., & Palmer, C. (2016). Distrusting the present. Phenomenology and the Cognitive Sciences, 15(3), 315–335.

Hohwy, J., Roepstorff, A., & Friston, K. J. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701.

Hurley, S. L. (1998). Consciousness in action. Harvard University Press.

Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, Mass.: MIT Press.

Jackson, F. (1982). Epiphenomenal qualia. The Philosophical Quarterly 32, 32(127), 127–136.

Kanai, R., Chang, A., Yu, Y., Magrans de Abril, I., Biehl, M., & Guttenberg, N. (2019). Information generation as a functional basis of consciousness. Neuroscience of Consciousness, 2019(1).

Kiefer, A. B. (2017). Literal perceptual inference. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and predictive processing. MIND Group.

Klein, C., & Barron, A. B. (2020). How experimental neuroscientists can fix the hard problem of consciousness. Neuroscience of Consciousness, 2020(1).

Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews Neuroscience, 17(5), 307–321.

Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11(1), 16–22.

Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & Lange, F. P. de. (2012). Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex, 22(9), 2197–2206.

Kok, P., Rait, L. I., & Turk-Browne, N. B. (2019). Content-based dissociation of hippocampal involvement in prediction. Journal of Cognitive Neuroscience, 32(3), 527–545.

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490.

Lamme, V. A. F. (2020). Visual functions generating conscious seeing. Frontiers in Psychology, 11.

Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1(3), 204–220.

Lange, F. P. de, Heilbron, M., & Kok, P. (2018). How do expectations shape perception? Trends in Cognitive Sciences, 22(9), 764–779.

Lau, H. C. (2008). A higher order Bayesian decision theory of consciousness. Elsevier, 168, 35–48.

Lau, H., & Rosenthal, D. (2011). Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences, 15(8), 365–373.

Laureys, S. (2005). The neural correlate of (un)awareness: Lessons from the vegetative state. Trends in Cognitive Sciences, 9(12), 556–559.

Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293–1299.

Lettvin, J. Y. (1976). On seeing sidelong. The Sciences, 16(4), 10–20.

Levine, J. (1983). Materialism and qualia: The explanatory gap. Pacific Philosophical Quarterly, 64(4), 354–361.

Li, H.-H., & Ma, W. J. (2020). Confidence reports in decision-making with multiple alternatives violate the Bayesian confidence hypothesis. Nature Communications, 11(1), 2004.

Limanowski, J., & Blankenburg, F. (2013). Minimal self-models and the free energy principle. Frontiers in Human Neuroscience, 7.

Litwin, P., & Miłkowski, M. (2020). Unification by fiat: Arrested development of predictive processing. Cognitive Science, 44(7), e12867.

Lush, P., Botan, V., Scott, R. B., Seth, A. K., Ward, J., & Dienes, Z. (2020). Trait phenomenological control predicts experience of mirror synaesthesia and the rubber hand illusion. Nature Communications, 11(1), 4853.

Marchi, F., & Hohwy, J. (2020). The intermediate scope of consciousness in the predictive mind. Erkenntnis.

Markov, N. T., Ercsey-Ravasz, M., Essen, D. C. V., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158).

Marshel, J. H., Kim, Y. S., Machado, T. A., Quirin, S., Benson, B., Kadmon, J., Raja, C., Chibukhchyan, A., Ramakrishnan, C., Inoue, M., Shane, J. C., McKnight, D. J., Yoshizawa, S., Kato, H. E., Ganguli, S., & Deisseroth, K. (2019). Cortical layer–specific critical dynamics triggering perception. Science, 365(6453).

Martin, J.-R., & Pacherie, E. (2019). Alterations of agency in hypnosis: A new predictive coding model. Psychological Review, 126(1), 133–152.

Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 776–798.

Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5.

Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8.

McFadden, J. (2020). Integrating information in the brain’s EM field: The cemi field theory of consciousness. Neuroscience of Consciousness, 2020(1).

McFadden, J. (2002). The conscious electromagnetic information (Cemi) field theory: The hard problem made easy? Journal of Consciousness Studies, 9(8), 45–60.

Meijs, E. L., Slagter, H. A., Lange, F. P. de, & Gaal, S. van. (2018). Dynamic interactions between top–down expectations and conscious awareness. Journal of Neuroscience, 38(9), 2318–2327.

Melloni, L., Schwiedrzik, C. M., Müller, N., Rodriguez, E., & Singer, W. (2011). Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. Journal of Neuroscience, 31(4), 1386–1396.

Mendonça, D., Curado, M., & Gouveia, S. (2020). The philosophy and science of predictive processing. Bloomsbury Publishing.

Metzinger, T. (2004). Being no one. MIT Press.

Metzinger, T. (Ed.). (2000). Neural correlates of consciousness: Empirical and conceptual questions. MIT Press.

Metzinger, T., & Wiese, W. (Eds.). (2017). Philosophy and predictive processing. MIND Group.

Miller, S. M. (2015). The constitution of phenomenal consciousness. John Benjamins.

Miller, S. M. (2007). On the correlation/constitution distinction problem (and other hard problems) in the scientific study of consciousness. Acta Neuropsychiatrica, 19(3), 159–176.

Millidge, B., Tschantz, A., & Buckley, C. L. (2020). Whence the expected free energy?

Milliere, R., & Metzinger, T. (2020). Radical disruptions of self-consciousness: Philosophy and the Mind Sciences, 1(I), 1–13.

Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., Goebel, R., & Yacoub, E. (2015). Contextual feedback to superficial layers of V1. Current Biology, 25(20), 2690–2695.

Neisser, J. (2012). Neural correlates of consciousness reconsidered. Consciousness and Cognition, 21(2), 681–690.

Noë, A. (2004). Action in perception. MIT Press.

Noë, A., & O’Regan, J. K. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939–973.

Noë, A., & Thompson, E. (2004). Are there neural correlates of consciousness? Journal of Consciousness Studies, 11(1), 3–28.

Noreika, V., Canales-Johnson, A., Harrison, W. J., Johnson, A., Arnatkevičiūtė, A., Koh, J., Chennu, S., & Bekinschtein, T. A. (2017). Wakefulness state modulates conscious access: Suppression of auditory detection in the transition to sleep. bioRxiv, 155705.

O’Brien, G., & Opie, J. (1999). A connectionist theory of phenomenal experience. Behavioral and Brain Sciences, 22, 127–148.

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLOS Computational Biology, 10(5), e1003588.

Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179–217.

Pal, D., Li, D., Dean, J. G., Brito, M. A., Liu, T., Fryzel, A. M., Hudetz, A. G., & Mashour, G. A. (2020). Level of consciousness is dissociable from electroencephalographic measures of cortical connectivity, slow oscillations, and complexity. Journal of Neuroscience, 40(3), 605–618.

Parr, T., Corcoran, A. W., Friston, K. J., & Hohwy, J. (2019). Perceptual awareness and active inference. Neuroscience of Consciousness, 2019(1).

Parr, T., & Friston, K. J. (2018). The anatomy of inference: Generative models and brain structure. Frontiers in Computational Neuroscience, 12.

Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292(5516), 510–512.

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press.

Perrykkad, K., & Hohwy, J. (2020). Fidgeting as self-evidencing: A predictive processing account of non-goal-directed action. New Ideas in Psychology, 56, 100750.

Petzschner, F. H., Weber, L. A., Wellstein, K. V., Paolini, G., Do, C. T., & Stephan, K. E. (2019). Focus of attention modulates the heartbeat evoked potential. NeuroImage, 186, 595–606.

Pinto, Y., Gaal, S. van, Lange, F. P. de, Lamme, V. A. F., & Seth, A. K. (2015). Expectations accelerate entry of visual stimuli into awareness. Journal of Vision, 15(8), 13–13.

Podvalny, E., Yeagle, E., Mégevand, P., Sarid, N., Harel, M., Chechik, G., Mehta, A. D., & Malach, R. (2017). Invariant temporal dynamics underlie perceptual stability in human visual cortex. Current Biology, 27(2), 155–165.

Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science, 357(6351), 596–600.

Prinz, J. J. (2012). The conscious brain: How attention engenders experience. Oxford University Press.

Rahnev, D., & Denison, R. N. (2018). Behavior is sensible but not globally optimal: Seeking common ground in the optimality debate. Behavioral and Brain Sciences, 41.

Reardon, S. (2019). “Outlandish” competition seeks the brain’s source of consciousness. Science.

Revonsuo, A. (2006). Inner presence: Consciousness as a biological phenomenon. MIT Press.

Rosenthal, D. M. (1986). Two concepts of consciousness. Philosophical Studies, 49(3), 329–359.

Rosenthal, D. M. (1997). A theory of consciousness. In N. Block, O. J. Flanagan, & G. Guzeldere (Eds.), The nature of consciousness (pp. 729–753). MIT Press.

Rudrauf, D., Bennequin, D., Granic, I., Landini, G., Friston, K. J., & Williford, K. (2017). A mathematical model of embodied consciousness. Journal of Theoretical Biology, 428, 106–131.

Sandved Smith, L., Hesp, C., Lutz, A., Mattout, J., Friston, K. J., & Ramstead, M. (2020). Towards a formal neurophenomenology of metacognition: Modelling meta-awareness, mental action, and attentional control with deep active inference. In PsyArXiv.

Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Scientific Reports, 7(1), 46421.

Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H., & Lakatos, P. (2010). Dynamics of active sensing and perceptual selection. Current Opinion in Neurobiology, 20(2), 172–176.

Searle, J. R. (2000). Consciousness. Annual Review of Neuroscience, 23(1), 557–578.

Seth, A. (2009). Explanatory correlates of consciousness: Theoretical and computational challenges. Cognitive Computation, 1(1), 50–63.

Seth, A. K. (2016). The real problem. Aeon.

Seth, A. K. (2021). Being you. Faber & Faber.

Seth, A. K. (2015a). Inference to the best prediction. In T. K. Metzinger & J. M. Windt (Eds.), Open mind. MIND Group.

Seth, A. K. (2015b). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. In T. K. Metzinger & J. M. Windt (Eds.), Open mind. MIND Group.

Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–118.

Seth, A. K. (2019). From unconscious inference to the beholder’s share: Predictive perception and human experience. European Review, 27(3), 378–410.

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573.

Seth, A. K., Millidge, B., Buckley, C. L., & Tschantz, A. (2020). Curious inferences: Reply to sun and firestone on the dark room problem. Trends in Cognitive Sciences, 24(9), 681–683.

Seth, A. K., & Tsakiris, M. (2018). Being a beast machine: The somatic basis of selfhood. Trends in Cognitive Sciences, 22(11), 969–981.

Sherman, M. T., Fountas, Z., Seth, A. K., & Roseboom, W. (2020). Accumulation of salient perceptual events predicts subjective time. bioRxiv, 2020.01.09.900423.

Sherman, M. T., Seth, A. K., Barrett, A. B., & Kanai, R. (2015). Prior expectations facilitate metacognition for perceptual decision. Consciousness and Cognition, 35, 53–65.

Skewes, J. C., Jegindø, E.-M., & Gebauer, L. (2015). Perceptual inference and autistic traits. Autism, 19(11).

Skora, L., Seth, A., & Scott, R. B. (2020). Sensorimotor predictions shape reported conscious visual experience in a breaking continuous flash suppression task. In PsyArXiv.

Stephan, K. E., Manjaly, Z. M., Mathys, C. D., Weber, L. A. E., Paliwal, S., Gard, T., Tittgemeyer, M., Fleming, S. M., Haker, H., Seth, A. K., & Petzschner, F. H. (2016). Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Frontiers in Human Neuroscience, 10.

Stuke, H., Weilnhammer, V. A., Sterzer, P., & Schmack, K. (2019). Delusion proneness is linked to a reduced usage of prior beliefs in perceptual decisions. Schizophrenia Bulletin, 45(1), 80–86.

Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409.

Sun, Z., & Firestone, C. (2020a). The dark room problem. Trends in Cognitive Sciences, 24(5), 346–348.

Sun, Z., & Firestone, C. (2020b). Optimism and pessimism in the predictive brain. Trends in Cognitive Sciences, 24(9), 683–685.

Suzuki, K., Schwartzman, D. J., Augusto, R., & Seth, A. K. (2019). Sensorimotor contingency modulates breakthrough of virtual 3D objects during a breaking continuous flash suppression paradigm. Cognition, 187, 95–107.

Teufel, C., & Fletcher, P. C. (2020). Forms of prediction in the nervous system. Nature Reviews Neuroscience, 21(4), 231–242.

Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(4), 753–759.

Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450–461.

Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. Science, 282(5395), 1846–1851.

Tononi, G., & Koch, C. (2008). The neural correlates of consciousness. Annals of the New York Academy of Sciences, 1124(1), 239–261.

Tsakiris, M., & Preester, H. D. (2018). The interoceptive mind: From homeostasis to awareness. Oxford University Press.

Tschantz, A., Millidge, B., Seth, A. K., & Buckley, C. L. (2020). Reinforcement learning through active inference.

Tschantz, A., Seth, A. K., & Buckley, C. L. (2020). Learning action-oriented models through active inference. PLOS Computational Biology, 16(4), e1007805.

Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19(12), 757–770.

Van de Cruys, S., Friston, K. J., & Clark, A. (2020). Controlled optimism: Reply to Sun and Firestone on the dark room problem. Trends in Cognitive Sciences, 24(9), 680–681.

Van der Helm, P. A. (2016). Structural coding versus free-energy predictive coding. Psychonomic Bulletin & Review, 23(3), 663–677.

Van Doorn, G., Paton, B., Howell, J., & Hohwy, J. (2015). Attenuated self-tickle sensation even under trajectory perturbation. Consciousness and Cognition, 36, 147–153.

Van Es, T. (2020). Living models or life modelled? On the use of models in the free energy principle. Adaptive Behavior.

Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345–381.

Vasser, M., Vuillaume, L., Cleeremans, A., & Aru, J. (2019). Waving goodbye to contrast: Self-generated hand movements attenuate visual sensitivity. Neuroscience of Consciousness, 2019(1).

Vogel, D. H. V., Beeker, T., Haidl, T., Kupke, C., Heinze, M., & Vogeley, K. (2019). Disturbed time experience during and after psychosis. Schizophrenia Research: Cognition, 17, 100136.

Vogel, D. H. V., Falter-Wagner, C. M., Schoofs, T., Krämer, K., Kupke, C., & Vogeley, K. (2020). Flow and structure of time experience – concept, empirical validation and implications for psychopathology. Phenomenology and the Cognitive Sciences, 19(2), 235–258.

Walsh, K. S., McGovern, D. P., Clark, A., & O’Connell, R. G. (2020). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464(1), 242–268.

Weilnhammer, V., Fritsch, M., Chikermane, M., Eckert, A.-L., Kanthak, K., Stuke, H., Kaminski, J., & Sterzer, P. (2020). Evidence for an active role of inferior frontal cortex in conscious experience. bioRxiv.

Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P., & Schmack, K. (2017). A predictive coding account of bistable perception – a model-based fMRI study. PLOS Computational Biology, 13(5), e1005536.

Whyte, C. J. (2019). Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. Consciousness and Cognition, 73, 102763.

Whyte, C. J., & Smith, R. (2020). The predictive global neuronal workspace: A formal active inference model of visual consciousness. bioRxiv.

Wiese, W. (2018). Toward a mature science of consciousness. Frontiers in Psychology, 9.

Wiese, W. (2015). Perceptual presence in the Kuhnian-Popperian Bayesian brain. In T. K. Metzinger & J. M. Windt (Eds.), Open mind. MIND Group.

Wiese, W. (2020). The science of consciousness does not need another theory, it needs a minimal unifying model. Neuroscience of Consciousness, 2020(1).

Williford, K., Bennequin, D., Friston, K. J., & Rudrauf, D. (2018). The projective consciousness model and phenomenal selfhood. Frontiers in Psychology, 9.

Woodward, J. (2003). Making things happen. Oxford University Press.

Yon, D., Gilbert, S. J., Lange, F. P. de, & Press, C. (2018). Action sharpens sensory representations of expected outcomes. Nature Communications, 9(1), 4288.

Yon, D., Lange, F. P. de, & Press, C. (2019). The predictive brain as a stubborn scientist. Trends in Cognitive Sciences, 23(1), 6–8.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.