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Abstract. Stream ciphers are vulnerable to generic time-memory-data tradeoff attacks.
These attacks reduce the security level to half of the cipher’s internal state size. The
conventional way to handle this vulnerability is to design the cipher with an internal
state twice as large as the desired security level. In lightweight cryptography and
heavily resource constrained devices, a large internal state size is a big drawback for
the cipher. This design principle can be found in the eSTREAM portfolio members
Grain and Trivium.
Recently proposals have been made that reduce the internal state size. These ciphers
distinguish between a volatile internal state and a non-volatile internal state. The
volatile part would typically be updated during a state update while the non-volatile
part remained constant. Cipher proposals like Sprout, Plantlet, Fruit and Atom
reuse the secret key as non-volatile part of the cipher. However, when considering
indistinguishability none of the ciphers mentioned above provides security beyond
the birthday bound with regard to the volatile internal state. Partially this is due to
the lack of a proper proof of security.
We present a new stream cipher proposal called Draco which implements a construc-
tion scheme called CIVK. In contrast to the ciphers mentioned above, CIVK uses the
initial value and a key prefix as its non-volatile state. Draco builds upon CIVK and
uses a 128-bit key and a 96-bit initial value and requires 23 % less area and 31 % less
power than Grain-128a at 10 MHz. Further, we present a proof that CIVK provides
full security with regard to the volatile internal state length against distinguishing
attacks. This makes Draco a suitable cipher choice for ultra-lightweight devices like
RFID tags.
Keywords: Symmetric-key cryptography · lightweight cryptography · stream ciphers
· provable security · TMDTO attacks · Grain · RFID

1 Introduction
Stream ciphers. In symmetric key cryptography, we typically distinguish two types of
encryption schemes: block ciphers and stream ciphers. Block ciphers divide a plaintext
into blocks of a fixed size and encrypt one such block of data as a whole. Stream ciphers
on the other hand consider the plaintext as a continuous stream of data. The stream
cipher maintains an internal state and in each step it outputs one bit or several bits and
updates its internal state. Throughout this work, we consider individual bit outputs. The
output bit stream is then combined with the plaintext, usually using the XOR operation.
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2 The Draco Stream Cipher

One advantage of stream ciphers is that their resource requirements are lower than those
of block ciphers in many application scenarios. This makes them particularly useful in
lightweight cryptography. Instances of stream ciphers are used in the GSM cellular phone
standard (A5/1), Bluetooth (E0) and wireless networking (RC4).
Vulnerabilities. Stream ciphers are vulnerable to time-memory-data tradeoff attacks
[Bab95, Gol96, BS00]. These types of attacks exploit the birthday paradox to recover an
internal state. This internal state can then be used to decrypt the remaining ciphertext.
Due to the birthday paradox the security of such ciphers is typically capped at half the
size of the internal state. Accordingly, this has influenced the design of stream ciphers in
such a way that the internal state size is at least twice the size of the desired security level.
This is in stark contrast to the lightweight principle of stream ciphers, since a larger state
necessarily increases resource requirements. Stream ciphers that employ a large internal
state are the eSTREAM portfolio members Grain [HJM06] and Trivium [CP05]. We refer
to these ciphers as the large-state-small-key construction, in short LSSK.
Recent work. Recently, efforts have been made to reduce the internal state size while
still retaining a reasonable security level. Lizard [HKM17b] raises the security against
key recovery attacks beyond the birthday bound, reaching a security level of 2n/3, where
n denotes the internal state’s size. It does this by adding the secret key to its internal
state in the last step of the state initialization. Its security against distinguishing attacks
however, remains at the birthday barrier [HK15].

In addition to the volatile internal state, the stream ciphers Fruit [AGH18], Plantlet
[MAM16] and Sprout [AM15] continuously use the secret key stored in non-volatile memory
during their state update. The hope was that the additional key bits would enhance
the security beyond the birthday bound with regard to the volatile internal state bits.
However, these constructions were not equipped with a proof of security and they were
eventually successfully attacked and broken [HKMZ18]. Atom [BCI+21] also uses the
secret key continuously. However it does not provide beyond the birthday bound security
against distinguishing attacks as the attack presented in [HKMZ18] also applies here. We
refer to these ciphers as the continuous-key construction, in short CKEY.

A third proposal was recently made in [HKM17a]. Instead of continuously using the
non-volatile secret key, the non-volatile initial value is employed during the state update.
A proof of security was later published in [HKM19]. We refer to these ciphers as the
continuous-IV construction, in short CIV.
Contribution. In this work we will present our new stream cipher proposal called Draco.
Draco uses a 128-bit volatile internal state and a 128-bit non-volatile internal state. The
non-volatile state consists of the initial value with a length of 96 bits and a key prefix with
length 32 bits.

This new generic scheme, that uses a non-volatile state consisting of the initial value and
key prefix, is called CIVK. In Section 5 we provide a security analysis in the random oracle
model and we prove that CIVK provides full security against generic time-memory-data
tradeoff attacks with regard to the volatile state length. In particular, this implies that
any generic distinguishing attack against CIVK has a time complexity of O(2ℓv ), where ℓv

denotes the volatile internal state size. In case of Draco, a time complexity of 2128 steps
is needed for a successful distinguishing attack. The corresponding attack on CIVK can be
found in Subsection 4.2 and therefore the bound shown in Section 5 is tight.

To the best of our knowledge, it is the first small-state stream cipher that achieves a full
128-bit security level against key-recovery and distinguishing attacks. Our main variant of
Draco stores the key prefix and the IV externally. In an ultra-lightweight scenario, like
RFIDs where the secret key is burned into the device or stored in an EEPROM and the
frame counter is used as the IV, Draco needs 23 % less area and 31 % less power than
Grain-128a at 10 MHz. The saving in power stems from reduced area requirements but
particularly also from the fact that unlike previous ciphers such as Grain-128a, only half
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of the state bits are constantly updated, thus significantly reducing costly dynamic power
consumption.

For high-performance environments, we also present the variant Draco[KI] where the
secret key and the initial value are stored inside the Draco hardware module while still
only 128 bits are used during the state update. At a clock speed of 1 GHz Draco needs
about 34 % less energy than Grain-128a. This demonstrates that not all internal state
bits need to be constantly updated to achieve a security level of 128 bits. For more details
please refer to Section 9.

Draco is a stream cipher that operates in packet mode, i.e. there may be up to 232

bits, i.e. 512 MiB, of output keystream per key-IV-pair. After this limit is reached, a
new IV has to be used. No IV may be used twice. In Subsection 7.6 we argue that most
transmission protocols use a packet size much lower than 512 MiB and therefore we see
the packet length as a valid constraint to keystream generation.
Outline. In Section 2 we provide the basics of stream ciphers. In Section 3 we present
the current stream cipher constructions with an enhanced state and introduce the CIVK
construction. In Section 4 we review time-memory-data tradeoff attacks on classic stream
ciphers and on CIVK. In Section 5 we present the proof of security for CIVK. In Section 6
we present the specification of the Draco cipher. In Section 7 we argue about the choice
of Draco’s parameters. In Section 8 we analyze Draco’s security against various attacks.
In Section 9 we present our hardware results. Section 10 concludes this work.

2 Stream Cipher Basics
Stream ciphers are symmetric encryption algorithms intended for the online encryption
of plaintext bitstreams X which have to pass an insecure channel. The encryption is
performed by bitwise addition of a keystream S to X, which is generated in dependence of
a secret symmetric session key k and public initial values. The legal recipient, who also
knows k, decrypts the encrypted bitstream Y = X ⊕ S by generating S and computing
X = Y ⊕ S. In this work, we consider key stream generator-based stream ciphers, i.e.
stream ciphers which generate the keystream using a so-called keystream generator (KSG).

2.1 Keystream Generation
Keystream generators are stepwise working devices that typically consist of interconnected
feedback shift registers (FSRs). KSGs can be formally specified by finite automata. The
KSG has an internal state length ℓs corresponding to the total amount of FSR register
cells. The corresponding set of internal states is denoted by Q := {0, 1}ℓs . In the following
we describe each step of the keystream generation process.

Initially, the secret key k, the initial value x and possibly a constant C are loaded into
the KSG’s register cells. We refer to this state as the loading state qload(k, x, C) ∈ Q.

The state initialization algorithm computes the initial state qinit(k, x, C) ∈ Q from
the loading state qload(k, x, C).1 This is done to ensure a sufficient level of diffusion and
confusion of the initial state bits. Normally, the main component of the state initialization
algorithm is an operation called mixing, performed by the KSG. In many stream ciphers,
mixing is done by clocking the KSG multiple times without producing keystream bits.

In every clock cycle i ≥ 0, the KSG produces an output bit zi = f(qi) according to
an output function f : Q → {0, 1}. Using the state update function π : Q → Q, the
internal state qi is then updated to qi+1 = π(qi). Typically, π is bijective and efficiently
invertible. We denote multiple evaluations of the state update function π by πr, e.g.
q2 = π2(q0) = π(π(q0)). The output key stream S(q0) is defined by concatenating all the
outputs z0||z1||z2||z3|| · · ·

1In the following we will omit the variables k, x and C when referring to qload and qinit.
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Some stream ciphers define an additional parameter. The packet length ℓp is defined to
be the maximum count of output bits per IV x. After reaching ℓp output bits, the IV x is
changed and state initialization is performed again.

2.2 Security Requirements
The main security requirement for stream ciphers is that it must be hard to distinguish
the keystream generated on a randomly chosen secret key from a truly random bitstream.
This implies the hardness of the state recovery problem:

Let S≤ℓp
(q) denote the first ℓp bits of keystream generated from the internal

state q. For a given piece of keystream z, compute an internal state q with
z = S≤ℓp(q).

This also implies that it is hard to recover the secret session key k.
The main drawback of KSG-based stream ciphers is their vulnerability to generic

time-memory-data tradeoff (TMDTO) attacks [Bab95, Gol96, BS00]. These attacks allow
to recover an internal state in time 2ℓs/2 and they have a memory and data requirement
of 2ℓs/2. This reduces their effective security level to one half of the internal state size.

Moreover, several stream ciphers like Trivium have an efficiently invertible state
initialization algorithm which allows to efficiently compute the secret session key from one
recovered internal state. Commercial stream ciphers like A5/1 and Bluetooth E0 ignored
the existence of TMDTO attacks. This brought their security level below the widely
accepted bound of 80 bits. The eSTREAM portfolio members Trivium [CP05] and Grain
v1 [HJM06] demonstrate awareness of TMDTO attacks by being designed in accordance
with the so-called LSSK construction. While for Trivium and Grain the session key length
is 80 bits, the internal state lengths of Grain v1 and Trivium are 160 bits and 288 bits,
respectively. This is in stark contrast to the lightweight principle of stream ciphers, since
a larger state necessarily increases resource requirements.

3 Enhanced State Stream Ciphers
In the last years an intensive search for new stream cipher constructions was conducted.
In particular, the goal was to decrease the internal state size while still retaining a high
resistance against TMDTO attacks. This research is accompanied by the development
of new information-theoretic methods that allow to prove the security of generic stream
cipher constructions against TMDTO attacks. This is similar to the formal framework
of Even-Mansour ciphers that was used to analyze the security of generic block cipher
constructions.

Three generic stream cipher constructions have been proposed so far: (1) the Lizard
construction [HKM17b], (2) the CKEY construction (underlying Fruit [AGH18], Plantlet
[MAM16], Sprout [AM15] and Atom [BCI+21]), and (3) the CIV construction [HKM17a,
HKM19]. The CKEY and the CIV construction rely on an enhanced state which will be
explained below in Subsection 3.1. In the following, we will give an overview over these
three constructions. Further we will introduce our new construction CIVK that combines
the ideas of CKEY and CIV to enhance the security level.

3.1 Enhancing the Internal State
The CKEY and CIV constructions divide the internal state into a volatile part of length
ℓv and a non-volatile part of length ℓnv := ℓs − ℓv. The non-volatile memory remains
unchanged during state update and state initialization. In practice, this allows to reduce
the amount of costly volatile register cells.
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Continuous Key. The first example was the CKEY construction. It uses the non-volatile
secret key not only for initialization, as is common, but also during state initialization
and keystream generation. This principle underlies the stream cipher proposals Sprout,
Plantlet, Fruit and Atom. However, it was shown in [HKM19] that the resistance of the
CKEY construction against generic TMDTO distinguishing attacks is at most ℓv/2.
Continuous IV. The CIV construction was first proposed in [HKM17a]. Contrary to
CKEY, it does not use the non-volatile key, but it uses the initial values as the non-
volatile part of the internal state. This construction provides a provable security level of
ℓv − log2(ℓp) [HKM19]. Note that there are no stream cipher instantiations based on the
CIV construction so far.
Continuous IV & Key. Our new construction CIVK uses the initial values as part of
the non-volatile state as well as a prefix of length log2(ℓp) of the secret key. In particular,
using the initial values and a key prefix from non-volatile memory, the volatile memory
is initialized with the key only, with ℓv = ℓk, where ℓk denotes the key length. We also
define the non-volatile internal state length ℓnv to be equal to the volatile state length, i.e.
we have ℓnv = ℓv = ℓk. The IV length ℓIV is determined by the key and packet length:
ℓIV = ℓnv − log2(ℓp) = ℓk − log2(ℓp).

As we will prove in this work, this allows us to reach a security level of the entire
volatile internal state length ℓv, resp. of the entire key length ℓk. In the next subsection
we will specify the CIVK construction in detail. The proof can be found in Section 5, the
resulting bound can be found in Subsubsection 5.2.4.

3.2 The CIVK Construction
We denote by Qnv the non-volatile internal state space and by Qv the volatile internal
state space. We denote an internal state by ⟨a | b⟩, where the left side a ∈ Qnv denotes the
non-volatile internal state and the right side b ∈ Qv denotes the volatile internal state. We
chose this notation to make it easier to distinguish internal states from arbitrary tuples.
Also, if for example the non-volatile state a consists of two parts a1 and a2, we will denote
this state by ⟨a1, a2 | b⟩. The key space is denoted by K and the IV space is denoted by IV .
The following description will define the keystream generation using the CIVK construction.

Packet length. CIVK is a construction that works in packet mode. The parameter ℓp

defines the packet length. For each key-IV-pair (k, x) ∈ K × IV CIVK may output
up to ℓp keystream bits.

Enhanced State. The internal state is divided into a volatile part that is updated during
state updates and a non-volatile part that is not updated during state updates. The
volatile part of the loading state consists of the secret key k only. The non-volatile
part consists of the IV x and a key prefix kpre of length at least log(ℓp). For a given
key-IV-pair (k, x) ∈ K × IV the loading state of CIVK is denoted by ⟨x, kpre | k⟩.
Typically the IV x and the key prefix kpre will be concatenated.

State Size. The parameters ℓk and ℓp are to be specified by the respective cipher built
upon CIVK. The length of the non-volatile internal state is equal to the key length,
i.e. ℓv = ℓk. The key prefix has a length of at least log(ℓp) as this allows to improve
upon the CIV construction to reach a security level of 2ℓk instead of 2ℓk /ℓp. Further,
we want to be able to generate 2ℓk bits of keystream per key k. As there is a limit of
ℓp bits per key-IV-pair (x, k), the IV length has to be at least log(2ℓk − ℓp). This
will ensure that the non-volatile state length ℓnv has at least the size of the volatile
state, i.e. ℓnv ≥ ℓv = ℓk.

Mixing Function. The loading state ⟨x, kpre | k⟩ is used as input to the mixing function p.
Its task is to provide the initial state with enough confusion and diffusion for further
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operation and corresponds to clocking the cipher without producing output bits.

p :Qnv ×Qv → Qnv ×Qv, ⟨x, kpre | k⟩ 7→ ⟨x, kpre | y⟩.

State Update. The state update function π updates an internal state ⟨x, kpre | y⟩ to the
next internal state ⟨x, kpre | y′⟩.

π :Qnv ×Qv → Qnv ×Qv, ⟨x, kpre | y⟩ 7→ ⟨x, kpre | y′⟩.

r successive invocations of the state update function π on an internal state ⟨x, kpre | y⟩
are denoted by πr⟨x, kpre | y⟩, e.g. for three successive invocations we write:

π3⟨x, kpre | y⟩ = π(π(π⟨x, kpre | y⟩)).

It is needed that the period of the state update function π is larger than ℓp for the
entire internal state space. This means that for any internal state ⟨x, kpre | y⟩ the set
{⟨x, kpre | y⟩, π1⟨x, kpre | y⟩, . . . , πℓp−1⟨x, kpre | y⟩} contains ℓp distinct elements.

Output Function. The output function f maps an internal state ⟨x, kpre | y⟩ to an output
bit z ∈ {0, 1}.

f :Qnv ×Qv → {0, 1}, ⟨x, kpre | y⟩ 7→ z.

Keystream Generation. Let (k, x) be an arbitrary key-IV-pair and let kpre be the corre-
sponding key prefix. Using the functions defined above we can define the construction
function e that corresponds to the keystream generation using the CIVK construction:

e : K × IV × {0, . . . , ℓp − 1} → {0, 1}, (k, x, r) 7→ f(πr(p⟨x, kpre | k⟩)).

We consider individual output bits and e outputs the r-th keystream bit. The entire
keystream packet of length ℓp for a key-IV-pair (k, x) looks as follows:

e(k, x, 0) || e(k, x, 1) || · · · || e(k, x, ℓp − 2) || e(k, x, ℓp − 1).

3.2.1 Comments on the State Length

The volatile loading state consists of the key k only and therefore we have ℓv = ℓk, where ℓk

is regarded as fixed. The length of the key prefix kpre and the IV x are not fixed but rather
lower bounded as described above. In the following we will elaborate on the consequences
of smaller or larger lengths.

If the length of the non-volatile state were lower than that of the volatile state, the
attack by Babbage and Golić presented in Subsection 4.2 would yield a smaller complexity
than 2ℓk .

The key prefix allows to improve upon the bound of CIV and is hence chosen to be
at least log(ℓp). A smaller value will decrease security as it makes the second attack in
Subsection 4.2 more probable.2 A longer key prefix without compromising the IV length
will increase the complexities of both attacks in in Subsection 4.2. Yet, the exhaustive key
search remains with a complexity of 2ℓk .

The IV length mainly influences how many keystream bits per key can be generated.
With a longer IV the second attack presented in Subsection 4.2 would still yield a complexity
of 2ℓk . Theoretically this would allow for more than 2ℓk bits of keystream to be generated.
A smaller IV would reduce the total amount of keystream bits that can be generated per
key. Depending on the size of the reduction this may not be an issue.

2The first attack also has a lower complexity if the non-volatile state length is decreased by a decrease
in the key prefix length.
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3.3 Hardware Implications of Continuous IV Access
Now one may argue from a hardware perspective that while the secret key has to be
stored anyhow (e.g., also for LSSK stream ciphers such as Trivium, Grain etc.) in order
to be reused with other IVs, this would not be the case for the IV. Hence, at first sight,
assuming that the IV is still accessible after state initialization might be considered cheating.
However, we do not think that this is the case for many application scenarios. For example,
in A5/1 of the GSM standard, the IV used for encrypting a data packet is the respective
(sequentially incremented) 22-bit frame number. Hence, any A5/1 device needs some
memory containing this frame number anyhow. Similarly, the DECT standard for cordless
telephone systems relies on frame numbers as IVs for encryption.

In general, especially for ciphers with small IV spaces, there always has to be a
mechanism like a stepwise incremented IV storage to make sure that the same IV is not
accidentally used twice under the same secret key. Similarly, in all communication scenarios
like A5/1 or DECT, where the packet number serves at the same time as an IV source, one
will always have this information. Note that such packet counters are not only prevalent
for standard network transmission protocols such as TCP/IP, but are also a common
component of lightweight wireless devices such as RFID tags, e.g., for synchronization
purposes and in order to protect against replay attacks.

The vast majority of RFID tags are based on ASICs (application-specific integrated
circuits), whose primary types of writable storage are non-volatile EEPROMs and volatile
flip-flops. In [MAM16], the designers of Plantlet extensively studied the effects of contin-
uously reading the secret key from an EEPROM during keystream generation. Despite
certain drawbacks of this approach, such as an increased design complexity and a potential
reduction of the maximal achievable throughput, they concluded that this is in fact feasible.
This naturally holds for any other kind of data stored in an EEPROM, too, such as a
packet counter serving as the IV source and being accessed in the same way. In particular,
the key-IV-schedule of Draco (cf. Section 6) accesses the 96 IV bits and the bits of the
32-bit key prefix in sequential order, just like the key schedule of Plantlet accesses the
cipher’s 80-bit key in sequential order.

The designers of Plantlet found this to be beneficial in terms of limiting the negative
performance impact of continuous EEPROM access on the maximal achievable throughput.
If the storage location of the IV source (such as the aforementioned network packet counter)
is an array of flip-flops instead, the feasibility of continuous IV access is straightforward,
because the ASIC’s cryptographic logic can be connected to those flip-flops through wires
at practically no cost.

In the previous paragraphs, we have explained that there are various scenarios where
the cipher’s key and/or IV are actually already present in some storage location on the
device, allowing to reuse this when realizing continuous key-IV access. In fact, the resulting
savings on flip-flops (and, thus, chip area) inside the cipher module have long been the
major motivation for such designs. In Section 9, we show that due to this focus on the
number of flip-flops, ignoring their actual usage, a great potential for reducing power
consumption has been missed, so far.

More precisely, with our implementation variant Draco[KI] we demonstrate that even
if a 2n-bit storage is required inside the cipher hardware module to achieve n-bit security
against TMDTO attacks, algorithmically keeping half of this state constant is much more
efficient (cf. Tab. 2 in Section 9) than and equally secure (see Section 8 and Section 5)
as constantly updating the whole of it. That is, we show that even if the key and the IV
are stored locally inside of the cipher hardware module (thus eliminating all the scenario
assumptions / usage restrictions described above) in order to implement continuous key-
IV access, our new small-state stream cipher Draco still allows to save up to 34 % of
energy as compared to Grain-128a when producing 10 kbit of keystream (including state
initialization) at a clock speed of 1 GHz.
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4 Time-Memory-Data Tradeoff Attacks
TMDTO attacks are generic attacks that only have black-box access to the mixing algorithm
and the output function of the KSG. The attacks assume that these components are ideally
designed. This means in particular that no internals of the underlying components can be
exploited by the adversary. The goal of TMDTO attacks is to discover weaknesses in how
these components interact to produce the keystream.

TMDTO attacks are often divided into a precomputation phase and an online phase.
In the precomputation phase some helping data structure is computed. In the online phase
the attack is executed based on the available keystream and the helping data structure.
Four cost dimensions are relevant to these attacks:

• The amount of keystream available D in the online phase.

• The time consumption T of the online phase.

• The time consumption P of the precomputation phase.

• The total memory consumption M of precomputation and online phase.

The costs are expressed in a so-called tradeoff curve. It consists of all 4-tuples (T, M, D, P )
of cost values that allow for a successful attack with high probability. For attacks without
a precomputation phase, the cost dimension P is not considered.

The first TMDTO attacks against KSG-based stream ciphers go back to Babbage
[Bab95] and Golić [Gol96]. They yield the tradeoff curve T ·D = 2ℓs . In particular, for
T = D = 2ℓs/2, this caps the security of stream ciphers at the birthday bound. We describe
the idea of these attacks in Subsection 4.1.

Biryukov and Shamir [BS00] combined the attacks of Babbage and Golić with Hellman’s
attack on block ciphers [Hel80]. This yields the tradeoff curve T ·M2 ·D2 = 22·ℓs with
P = 2ℓs/D. In [BS00], Biryukov and Shamir also discuss a technique called BSW-sampling,
which was originally used by Biryukov, Shamir, and Wagner in [BSW01] to attack the GSM
cipher A5/1. While BSW-sampling allows to relax the restriction T ≥ D2 in the above
attack, the tradeoff curve T ·M2 ·D2 = 22·ℓs and the relation P = 2ℓs/D remain unchanged.
Hence, if one considers precomputation to be part of the overall attack complexity (as we
do3), even the use of BSW-sampling does not allow for attacks with overall complexity
lower than 2ℓs/2. Moreover, the applicability of BSW-sampling is highly cipher specific
(see [BS00] for further details) and, thus, corresponding TMDTO attacks are not fully
generic.

In [HS05], Hong and Sarkar consider the TMDTO case of sampling pairs of keys and
IVs instead of sampling from the space of internal states. In a single-key scenario, as
treated in our analysis, this approach has an overall complexity (including precomputation)
at least as large the complexity of exhaustive key search. Only in scenarios with multiple
keys, where the attacker’s goal is to discover one of these keys, a lower overall complexity
can be achieved. Consequently, neither of the results in [BS00] and [HS05] conflicts with
our security bounds for CKEY and CIVK.

In the remainder of this section we first sketch the original attacks by Babbage and
Golić. Then we show how to modify and apply these attacks the CIVK construction,
in order to derive a corresponding upper bound for security against TMDTO attacks.
Together with the results presented in Subsubsection 5.2.4 this will yield a tight bound for
CIVK.

3In [Hel80], Hellman himself acknowledges that “[i]n the real world, we must ensure that the precompu-
tation is not excessive”. Our new stream cipher Draco introduced in Section 6 targets a security level of
128 bits and a precomputation complexity of 2128 is clearly ‘excessive’. After all, e.g., AES could otherwise
be attacked with online complexity around 285 using Hellman’s original time-memory tradeoff.
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4.1 The TMDTO Attack of Babbage and Golić
Suppose that the attacker knows a set S of D keystream blocks of length ℓs. These blocks
originate from one session with the secret session key k, but are allowed to stem from
different keystream packets. Let R = {q1, . . . , qD} denote the set of corresponding internal
states. The attacker generates a set of T internal state/keystream block pairs (y, S≤ℓs

(y))
for randomly chosen internal states y ∈ Q. If D · T ≈ 2ℓs , there will be a collision between
the observed keystream and the generated keystream with high probability according
to the birthday paradox. In particular for D = T = 2ℓs/2 the security is capped at the
birthday bound. As a result, the attacker knows the internal state qj corresponding to one
keystream block of a packet generated with respect to a known initial value x. This allows
the adversary to compute the entire keystream packet corresponding to k and x as well as
the initial state qinit for this packet. Knowing an internal state, the adversary can simply
compute the following internal states using the known state update function and use these
states as inputs to the output function to generate the remaining keystream. Moreover, for
Trivium, Grain v1, and many other ciphers, it is possible to efficiently recover the secret
key k from qinit.

4.2 TMDTO Attacks against CIVK
The CIVK construction refers to a cipher working in packet mode. The packet length
is ℓp. In CIVK the IV x and a prefix of length log2(ℓp) of the secret session key k are
continuously employed during mixing and keystream generation. Thus the IV and the key
prefix become the non-volatile part of the cipher’s internal state. The secret key is loaded
into the volatile part of the internal state.

Note that there are two ways of applying the Babbage-Golić TMDTO attack to this
cipher. The first approach is to mount the attack in its original form, which does not take
the special structure of the internal states into account. This attack has the tradeoff curve
T ·D = 2ℓs = 2ℓnv+ℓv . Let ℓIV be the length of the IV x. The maximum amount of data
D that can be obtained is

ℓp · 2ℓIV = 2log2 (ℓp)+ℓIV = 2ℓnv

as at most ℓp bits per IV x are produced. For this maximal D the tradeoff curve yields a
time complexity of T = 2ℓv = 2ℓk .

The second approach is to make use of the fact that the IVs for the keystream packets
are known by the adversary. We assume that the adversary obtains p keystream packets
(of length ℓp) corresponding to the initial values x1 to xp. This corresponds to a data
complexity of D = p · ℓp. For each xi the attacker generates s times a random key prefix
kpre

i and a random volatile internal state zi ∈ {0, 1}ℓv . From xi, kpre
i and zi the attacker

computes an output keystream block S≤ℓs(x, k̃, z) of length ℓs.
A collision in the volatile internal state occurs with high probability if D · s = 2ℓv .

Additionally, the adversary needs a correct non-volatile internal state. The IV is known to
the attacker and the key prefix is guessed correctly with a probability of ℓ−1

p . Hence, the
probability that one out of the s generated key prefixes per IV xi is correct, is s/ℓp. We
obtain that an attack is successful if

D · s

ℓp
= p · ℓp ·

s

ℓp
= p · s = 2ℓv .

Note that regardless of how many keystream packets are observed, the attacker always
has a time complexity of T = p · s = 2ℓv . Insofar, it would be ideal to only attack one
keystream packet.

Also note that, assuming a chosen-IV attacker, all p · s = 2ℓk keystream packets can be
precomputed and need to be stored in efficiently searchable data structure, i.e. a binary
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tree. This will require a time complexity of 2ℓk in the offline phase and a space (memory)
complexity of 2ℓk . The online phase, when observing a keystream packet, will then have a
time complexity of log2(2ℓk ) = ℓk to search for the collision on the previously computed
keystream packets. While the online time complexity is significantly reduced, there is an
excessive amount of precomputation time necessary and the space complexity in the online
phase is 2ℓk . Even if a time complexity of 2ℓk were not excessive, a space complexity of
2ℓk may very well be.

5 Proof of Security
In the following, we will present the preliminaries, notation and random oracle model
necessary for the proof of security.

5.1 Random Oracle Model
An adversary will be interacting with a set of three oracles in one of two worlds: the real
world or the ideal world. There will be an oracle P for the mixing function, an oracle F
for the output function and an oracle E for the construction function.4 The adversary can
query the oracles with the inputs of the respective functions and it will receive answers
from the oracle. These query-answer-pairs are collected by the adversary in a transcript.

The P - and F -oracles will answer their queries using ideal randomized primitives in
either world: The P -oracle will use a random permutation P (more specifically: multiple
random permutations as described in Subsubsection 5.1.3) and the F -oracle will use a
random function F. In the real world, the E-oracle uses P and F as underlying building
blocks. In the ideal world, the E-oracle will have access to another independent random
function E. By assuming the underlying building blocks to be ideal one can abstract from
possible weaknesses in the mixing function and the output function that an implementation
may have and show that the scheme, the interaction of those building blocks, is secure.
This will not prove an instantiation to be secure but provide a plausible justification for
the structure of a cipher built upon CIVK, in this case Draco.

In the ideal world E, corresponding to the encryption function, will sample the output
bits uniformly at random from {0, 1}. We will show that the adversary can not distinguish
the ideal world from the real world in this scenario. In particular, this will show that the
keystream generated by the “real” encryption function is indistinguishable from a truly
random bitstream.

We will first describe the proof technique, then the distinguishing game and then
explain in detail how the oracle queries and the adversary’s transcript look like.

5.1.1 H-coefficient Technique

To prove the security of CIVK we will use the H-coefficients technique. The H-coefficients
technique [Pat08] is a proof method due to Patarin, where we consider the variant by Chen
and Steinberger [CS14]. The results of the interaction of an adversary A with its oracles
are collected in a transcript τ . The oracles can sample randomness prior to the interaction
(often a key or an ideal primitive that is sampled beforehand), and are then deterministic
throughout the experiment [CS14]. The task of A is to distinguish the real world Oreal from
the ideal world Oideal. Let Θreal and Θideal denote the distribution of transcripts in the
real and the ideal world, respectively. A transcript τ is called attainable if the probability
to obtain τ in the ideal world – i.e. over Θideal – is non-zero. Then, the fundamental
Lemma of the H-coefficients technique, the proof to which is given in [CS14, Pat08], states:

4π is publicly known and hence no oracle is needed.
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Table 1: Inputs and outputs of the four oracle query types.

Query Type Input Output
P ⟨xP , kpre

P | kP ⟩ ⟨xP , kpre
P | yP ⟩

P −1 ⟨xP , kpre
P | yP ⟩ ⟨xP , kpre

P | kP ⟩
F ⟨xF , kpre

F | yF ⟩ zF ∈ {0, 1}
E (xE , rE) zE ∈ {0, 1}

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [Pat08]). Assume, the
set of attainable transcripts can be partitioned into two disjoint sets GoodT and BadT.
Further assume that there exist ϵ1, ϵ2 ≥ 0 such that for any transcript τ ∈ GoodT, it holds
that

Pr [Θreal = τ ]
Pr [Θideal = τ ] ≥ 1− ϵ1, and Pr [Θideal ∈ BadT] ≤ ϵ2.

Then, for all adversaries A, it holds that A’s distinguishing advantage ∆A (Oreal,Oideal)
can be upper bounded by ∆A (Oreal,Oideal) ≤ ϵ1 + ϵ2.

5.1.2 The Distinguishing Game

In the beginning of the adversary’s interaction with the oracles a key k
$← K will be sampled

uniformly at random from the key space K. Next, the adversary poses its questions to the
P -, F - and E-oracles with the additional limit of at most ℓp E-queries per IV x. All of the
query-answer-pairs will be collected in the corresponding τP , τF and τE transcripts. When
the adversary is finished with its interaction with the oracles it is given the secret key k
as well as the transcript τα, which contains the intermediate values generated during an
E-query and will be defined more explicitly in Subsubsection 5.1.4. Based on the transcript
τ = (τP , τE , τF , τα, k) the adversary has to make its decision whether it was interacting
with the real world or the ideal world and output a decision bit. If the adversary’s guess is
correct, it wins the game. Our task is to upper bound the adversary’s success probability.

5.1.3 Oracle Queries

The adversary will be given access to the P -, F - and E-oracles that correspond to the
mixing function, output function and construction function respectively. For clarity, we
provide a table about how the inputs, as chosen by the adversary, and outputs of the
respective queries look like and then we will explain how the oracles are implemented.
Note that we index the variables with the query type. In particular kP and kF denote key
guesses and need not be equal to the actual key k. We chose this notation to make it clear
that when using kP , we refer to the variable that is used in place of the actual key k in a
P -query.

P-oracle. The P -oracle that corresponds to the mixing function will be implemented using
random permutations. Note that the mixing function p keeps the non-volatile internal
state unchanged and only the volatile internal state gets permuted. Hence, for every
(x, kpre) ∈ Qnv the volatile internal state is permuted using an independent random
permutation Px,kpre : Qv → Qv. For each Px,kpre we will use lazy sampling: As the
first P -query ⟨xP , kpre

P | kP ⟩ arrives, the oracle will sample the answer uniformly at
random from all 2ℓv possible answers. As the second P -query arrives, the oracle will
sample the answer uniformly at random from all 2ℓv − 1 remaining possible answers,
and so on. The permutation P is defined as follows:

P : Qnv ×Qv → Qnv ×Qv, ⟨xP , kpre
P | kP ⟩ 7→ ⟨xP , kpre

P |PxP ,kpre
P

(kP )⟩
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The adversary may query the P -oracle in either the forward or the backward direction.
Remark 1. In either world it is possible to choose kpre

P and kP such that kpre
P is not a

prefix of kP . As the mixing function is bijective, the corresponding internal state
⟨xP , kpre

P | yP ⟩ will be invalid, i.e. it will not occur during an actual encryption using
CIVK. These states cannot be used to obtain a distinguishing event. We will ignore
queries of this type as they yield no advantage to the adversary.

F-oracle. The F -oracle that corresponds to the output function will be implemented using
a random function F : Qnv ×Qv → {0, 1}. Only queries in the forward direction are
allowed. We again use lazy sampling; as an F -query arrives the output is sampled
uniformly at random from {0, 1}.

E-oracle. The E-oracle is defined differently in the real world and in the ideal world: In
the real world it is defined similarly to the construction function e and implicitly
uses the secret key k, the random permutation P, the state update function π and
the random function F:

E : IV × {0, . . . , ℓp − 1} → {0, 1}, (xE , rE) 7→ F(πrE (P⟨xE , kpre | k⟩))

In the ideal world E : IV × {0, . . . , ℓp − 1} → {0, 1} is a random function with
outputs sampled uniformly at random from {0, 1}.

5.1.4 Transcripts

All of the adversary’s queries to the oracles and the corresponding answers will be collected
in a transcript τ . In particular, we will keep separate transcripts τP , τF and τE for each
of the corresponding oracles P , F and E defined as follows:

τP := {(xP , kpre
P , kP , yP ) | ⟨xP , kpre

P | kP ⟩ is a P -query and ⟨xP , kpre
P | yP ⟩ its answer.}

τF := {(xF , kpre
F , kF , zF ) | ⟨xF , kpre

F | kF ⟩ is an F -query and zF its answer.}
τE := {(xE , rE , zE) | (xE , rE) is an E-query and zE its answer.}

The transcripts mentioned above are visible to the adversary as it makes its queries to the
oracles. Once the adversary’s interaction with the oracles is finished it will additionally be
given the secret key k and the transcript τα defined as follows:

τα := {(xE , rE , αE , αr
E) | (xE , rE) is an E-query and (αE , αr

E) its α-values.}

The α-values for each E-query (xE , rE) are defined as follows:

αE := P ⟨xE , kpre | k⟩ and αrE

E := πrE (P ⟨xE , kpre | k⟩)

The α-values correspond to the internal states that are generated during an E-query. αE

represents the initial value and αrE

E represents the input to the output function F. We
will also sample these values in the ideal world, even though the construction function E
does not depend on these.

The full transcript can be written as a 5-tuple τ = (τP , τE , τF , τα, k).

5.2 Security Analysis
We will now perform the security analysis of CIVK. In particular, for the CIVK construction
we will show the following:
Lemma 2. For the CIVK construction as defined in Subsection 3.2 where the mixing
function p and the output function f are replaced with their ideal counterparts, as defined
in 5.1.3, and up to ℓp adversarial queries per IV x ∈ IV we have that for all adversaries
A it holds that

∆
A

(Oreal,Oideal) ≤
q

2ℓk − q
.
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From an attacker’s point of view, the goal is to recover an internal state by obtaining a
collision between an observed keystream and a generated keystream. If the keystreams
collide, there is a high probability that they were generated from the same internal state.
In particular, the same internal state always generates the same keystream; in the real
world.

In our model, the adversary does not have to rely on observing collisions in the
keystream as it is provided the α-values at the end of the interaction. The α-values
correspond to the internal states of the respective output bit. Hence, the adversary’s goal
will be to obtain a collision between the α-values and the inputs of the F -queries.

If there occurs a collision between an α-value (corresponding to an E-query) and an
F -query the corresponding outputs of the E-query and the F -query will always be identical
in the real world, as E internally uses P, π and F. In the ideal world however, E is another
random function independent of P, π and F and hence colliding α-values and F -query
inputs only lead to the same output bit with a probability of 1

2 . This will be used as a
distinguishing, i.e. bad, event.

5.2.1 Bad Events

Note that the IV x is chosen by the adversary. There are two strategies for the adversary
to obtain a collision between the α-values and an F -query input:

1. Guess the key prefix kpre as well as a volatile internal state y correctly and ask the
corresponding F -query F ⟨x, kpre | y⟩.

2. Guess the key k correctly, ask the corresponding P -query P ⟨x, kpre | k⟩ to obtain
⟨x, kpre | y⟩ and ask the corresponding F -query F ⟨x, kpre | y⟩.

If the outputs of the F -query and the output of the E-query corresponding to the colliding
α-value differ, the adversary surely is in the ideal world. We will introduce two bad events
that correspond to the two strategies mentioned above.

bad1 (Guessing the key prefix and an internal state) There exists an E-query (xE , rE)
and an F -query ⟨xF , kpre

F | yF ⟩ such that

αrE

E = ⟨xF , kpre | yF ⟩ and E(xE , rE) ̸= F ⟨xF , kpre | yF ⟩.

bad2 (Guessing the key) There exists a P -query ⟨xP , kpre
P | kP ⟩, an E-query (xP , rE) and

an F -query πrE (P ⟨xP , kpre
P | kP ⟩) such that

(kpre
P , kP ) = (kpre, k) and E(xP , rE) ̸= F (πrE (P ⟨xP , kpre

P | kP ⟩)).

Remark 2. Note that bad2 represents a special case of bad1. In particular we have that

P ⟨xP , kpre
P | kP ⟩ = αE and πrE (P ⟨xP , kpre

P | kP ⟩) = αrE

E .

Considering these as separate bad events will simplify our analysis.

5.2.2 Bounding the Bad Events

Lemma 3.
Pr [Θideal ∈ BadT] ≤ q

2ℓk − q
.

Proof. Since we are in the ideal world, the answers to the E-, F - and P -queries are
independent of the secret key (kpre, k). For simplicity, we will sample the secret key (kpre, k)
after the adversary’s interaction with the oracles. Also, we will sample the values αE for
each query after the adversary’s interaction with the oracles.



14 The Draco Stream Cipher

bad2: We will first consider the event bad2. There are at most q P -queries with at most
q distinct (kpre

P , kP ). The secret key (kpre, k) is sampled independently at random
with regard to the uniform distribution from the set {0, 1}ℓk . The probability of a
collision with the secret key (kpre, k) can therefore be upper bounded by q/2ℓk .
The outputs of the E- and F -queries collide with a probability of 1/2. We obtain:

Pr [bad2] ≤ 1
2 ·

q

2ℓk
≤ 1

2 ·
q

2ℓk − q
.

bad1: We will now consider the event bad1. Since we already bounded the probability
for bad2, we will now consider Pr[bad1|¬bad2]. We decided to sample αE after the
adversary’s interaction with the oracles.
By conditioning on ¬bad2, we know that for all x ∈ IV no value P ⟨x, kpre | k⟩ has yet
been sampled. This applies since there was no adversarial P -query with the correct
key. This implies, as we sample the α-values after the adversary’s interaction with
the oracle, no α-value has yet been sampled.
To obtain a collision between an F -query and an α-value, three conditions need to
apply:

1. The key prefix kpre needs to be guessed correctly.
2. The F -query and the E-query, resp. α-value, need to utilize the same IV x.
3. A collision in the volatile state needs to occur.

We will individually bound the conditions above. Fix any F-query F ⟨xF , kpre
F | yF ⟩.

1. As we sample the key k after the adversary’s interaction with the oracles, a key
prefix collision occurs with a probability of

Pr [kpre
F = kpre] = ℓ−1

p .

2. There are at most ℓp E-queries, resp. α-values, to collide with, as the E-queries
are limited to ℓp queries per IV x ∈ IV.

3. Fix some E-query (xE , rE) where xE = xF . Consider the internal state ρ =
π−rE ⟨xF , kpre|yF ⟩. The value αE = P ⟨xE , kpre | k⟩ is sampled after the F -query.
As there are at most q queries we obtain

Pr [P ⟨xE , kpre | k⟩ = ρ] ≤ (2ℓv − q)−1.

Note that there could be P -queries utilizing xE and kpre with kP ≠ k and therefore
we need to upper bound the amount of queries above by q. We obtain that the
probability of a single fixed F -query to collide with an α-value is upper bounded by:

Pr [kpre
F = kpre] · ℓp · Pr [P ⟨xE , kpre | k⟩ = ρ] = 1

ℓp
· ℓp

2ℓv − q
= 1

2ℓv − q
.

The outputs of the E- and F -queries collide with a probability of 1/2. Summing up
over at most q F -queries we obtain:

Pr [bad1 | ¬bad2] ≤ 1
2 ·

q

2ℓv − q
.

Lemma 3 follows from the union bound of the above individual bad events. Note that
ℓk = ℓv.
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5.2.3 Good Transcripts

We upper bounded the occurrence of a distinguishing event in the ideal world in the
previous section. In this section it remains to show that in the absence of a distinguishing
event, the ideal construction is indistinguishable from the real construction:

Lemma 4. For any good transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ] = Pr [Θideal = τ ] .

Proof. In either world, the permutation P and the secret key k are sampled uniformly at
random and are therefore trivially indistinguishable.

We still need to argue about the answers to the E- and the F -queries. We define A as
the set of all αr-values and F as the set of all F -query inputs that are contained in the
transcript τ . Formally A is defined as:

A := {πr (P ⟨x, kpre | k⟩) | (x, r) is an E-query}

As collisions between E- and F -queries do not occur in the good transcripts, we know
that A ∩ F = ∅. Therefore we can conclude that for all αr ∈ A, for all y ∈ F and for all
z, z′ ∈ {0, 1}:

Pr
real

[F (αr) = z, F (y) = z′] = Pr
ideal

[E(x, r) = z, F (y) = z′].

The above holds as all z, z′ are independent random variables sampled uniformly from
{0, 1}. In particular, in either world, we evaluate F and E on different inputs only. The
outputs are then sampled by a random function.

5.2.4 Security Bounds

We obtain Lemma 2 from Lemma 1, Lemma 3 and Lemma 4. Ultimately we could verify
that the CIVK construction reaches a security level equal to the key length ℓk.

6 Design Specification of DRACO
The design of Draco is similar to that of Lizard [HKM17b], which was in turn inspired
by the Grain family [HJMM08] of stream ciphers. In particular, the inner state of Draco
is distributed over two interconnected feedback shift registers (FSRs) as depicted in Fig. 1.

NFSR2 NFSR1

a

Key-IV ScheduleKey Prefix 0,IV

dt

9732

40
f2

33
f1

zt

49 10

Bt
0 Bt

94 St
0 St

32
St

0

Figure 1: Draco in keystream generation mode.

Note, however, that while Grain uses one linear feedback shift register (LFSR) and one
nonlinear feedback shift register (NFSR), which, moreover, are of the same length, Draco
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(like Lizard) uses two NFSRs of different lengths instead. The reasons for this design
choice will be explained in Section 7. Like in Grain, the third important building block
besides the two FSRs is a nonlinear output function, which takes inputs from both shift
registers and is also used as part of the state initialization algorithm. A major difference
to Grain (and also Lizard) is that Draco continuously uses the IV and (parts of) the
key not only during state initialization but also during keystream generation.

In the following, we describe the components of the cipher in detail (Sec. 6.1) and
specify how it is operated during state initialization (Sec. 6.2) and keystream generation
(Sec. 6.3). For the sake of clarity, subsections 6.1–6.3 contain only the technical aspects of
Draco. Explanations of important design choices for our construction are given separately
in Section 7, along with a discussion of the security properties of the particular components
(e.g., the algebraic properties of the feedback functions).

6.1 Components
Let K = (K0, . . . , K127) denote the 128-bit secret key and IV = (IV0, . . . , IV95) the 96-bit
public IV. The 128-bit volatile inner state of Draco is distributed over two NFSRs,
NFSR1 and NFSR2, whose contents at time t = 0, 1, . . . we denote by (St

0, . . . , St
32) and

(Bt
0, . . . , Bt

94), respectively (cf. Fig. 1). As NFSR1 and NFSR2 are Fibonacci-type, for
t ∈ N it holds that St+1

i := St
i+1, i = 0, . . . , 31, and Bt+1

j := Bt
j+1, j = 0, . . . , 93.

6.1.1 Non-volatile State

Besides the 128-bit volatile inner state, Draco additionally employs a 128-bit non-volatile
inner state, which is formed by the 96-bit public IV and the first 32 bits (i.e., K0, . . . , K31)
of the 128-bit secret key. Based on this 128-bit non-volatile inner state and the public
1-bit constant 0, in clock cycle t the key-IV-schedule bit (KIS bit) dt is computed as

dt :=
{

xt mod 97, for 0 ≤ t ≤ 255,

Kt mod 32 ⊕ xt mod 97, for t ≥ 256,

where x0 := 0 and xi := IVi−1 for i = 1, . . . , 96. The KIS-bit dt is fed to NFSR2 as depicted
in Fig. 1 and described more formally below.

6.1.2 NFSR1

Draco’s NFSR1 replaces the LFSR of the Grain family of stream ciphers. NFSR1 is 33
bits wide and corresponds (with a slight adaption, see below) to the NFSR A12 of the
eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80 [GGK06].
For all starting states, it has a guaranteed period of 233 (i.e., truly maximal) and can
be specified by the following update relation (during keystream generation), defining f1
depicted in Fig. 1:

St+1
32 := St

0 ⊕ St
2 ⊕ St

7 ⊕ St
9 ⊕ St

10 ⊕ St
15 ⊕ St

23 ⊕ St
25 ⊕ St

30 ⊕ St
8St

15 ⊕ St
12St

16

⊕ St
13St

15 ⊕ St
13St

25 ⊕ St
1St

8St
14 ⊕ St

1St
8St

18 ⊕ St
8St

12St
16 ⊕ St

8St
14St

18

⊕ St
8St

15St
16 ⊕ St

8St
15St

17 ⊕ St
15St

17St
24 ⊕ St

1St
8St

14St
17 ⊕ St

1St
8St

17St
18

⊕ St
1St

14St
17St

24 ⊕ St
1St

17St
18St

24 ⊕ St
8St

12St
16St

17 ⊕ St
8St

14St
17St

18

⊕ St
8St

15St
16St

17 ⊕ St
12St

16St
17St

24 ⊕ St
14St

17St
18St

24 ⊕ St
15St

16St
17St

24

⊕ ¬St
1¬St

2 · · · ¬St
30¬St

31¬St
32.

Note that NFSR1 of Draco differs from NFSR A12 of ACHTERBAHN-128/80 only in
the additional final term ⊕¬St

1¬St
2 · · · ¬St

30¬St
31¬St

32, which turns the period 233 − 1 of
A12 into the truly maximal period 233 for NFSR1. That is, NFSR1 of Draco cannot get
stuck in the all-zero state.
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6.1.3 NFSR2

NFSR2 is 95 bits wide and uses a modified version of g from Grain-128a [ÅHJM11] as
its feedback polynomial. More precisely, f2 of NFSR2 (cf. Fig. 1) shifts six taps of g by
two positions to the left in order to fit a 95 bit register (i.e., tap shifts 86← 88, 89← 91,
90 ← 92, 91 ← 93, 93 ← 95, 94 ← 96). Moreover, four quadratic monomials and one
degree-three monomial are added to further strengthen Draco, inter alia, against algebraic
attacks. This results in the following update relation (during keystream generation):

Bt+1
94 := St

0 ⊕ dt ⊕Bt
0 ⊕Bt

26 ⊕Bt
56 ⊕Bt

89 ⊕Bt
94 ⊕Bt

3Bt
67 ⊕Bt

11Bt
13

⊕Bt
17Bt

18 ⊕Bt
27Bt

59 ⊕Bt
36Bt

39 ⊕Bt
40Bt

48 ⊕Bt
50Bt

79 ⊕Bt
54Bt

71

⊕Bt
58Bt

63 ⊕Bt
61Bt

65 ⊕Bt
68Bt

84 ⊕Bt
8Bt

46Bt
87 ⊕Bt

22Bt
24Bt

25

⊕Bt
70Bt

78Bt
82 ⊕Bt

86Bt
90Bt

91Bt
93.

Note that this update relation for Bt+1
94 additionally contains the masking bit St

0 from
NFSR1 (analogously to the Grain family) as well as the KIS bit dt (unlike the Grain
family).

6.1.4 Output Function a

a : {0, 1}59 −→ {0, 1} builds on the construction scheme introduced in [MJSC16] as part
of the FLIP family of stream ciphers (see Sec. 7 for details). For the sake of clarity, we
define a through the output bit zt of Draco at time t, which is computed as

zt := Lt ⊕Qt ⊕ T (1)
t ⊕ T (2)

t ⊕ T (3)
t ,

where

Lt := Bt
7 ⊕Bt

15 ⊕Bt
32 ⊕Bt

47 ⊕Bt
66 ⊕Bt

80 ⊕Bt
92,

Qt := Bt
5Bt

85 ⊕Bt
12Bt

74 ⊕Bt
20Bt

69 ⊕Bt
34Bt

57,

T (1)
t := Bt

53 ⊕Bt
38Bt

44 ⊕Bt
23Bt

49Bt
83 ⊕Bt

6Bt
33Bt

51Bt
73

⊕Bt
4Bt

29Bt
43Bt

60Bt
81 ⊕Bt

9Bt
14Bt

35Bt
42Bt

55Bt
77

⊕Bt
1Bt

16Bt
28Bt

45Bt
64Bt

75Bt
88,

T (2)
t := St

26 ⊕ St
5St

19 ⊕ St
11St

22St
31,

T (3)
t := Bt

76 ⊕ St
3Bt

10 ⊕ St
20Bt

21Bt
30 ⊕ St

6St
29Bt

62Bt
72.

6.2 State Initialization
The state initialization process can be divided into 2 phases and is similar to the classical
Grain-type initialization.

6.2.1 Phase 1: Key Loading

The registers of the keystream generator are initialized as follows:

B0
j :=

{
Kj ⊕ 1, for j = 0,

Kj , for j ∈ {1, . . . , 94} ,

S0
i := Ki+95, for i ∈ {0, . . . , 32} .
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NFSR2 NFSR1

a

Key-IV ScheduleKey Prefix 0,IV

dt

9732

40
f2

33
f1

zt

49 10

Bt
0 Bt

94 St
0 St

32
St

0

Figure 2: Draco in phase 2 of the state initialization.

6.2.2 Phase 2: Grain-like Mixing

Clock the cipher 512 times without producing actual keystream. Instead, at time t =
0, . . . , 511, the output bit zt is fed back into both FSRs as depicted in Fig. 2. To avoid
ambiguity, we now give the full update relations that will be used for NFSR2 and NFSR1
in phase 2. For t = 0, . . . , 511, compute

Bt+1
j := Bt

j+1 for j ∈ {0, . . . , 93} ,

Bt+1
94 := zt ⊕ St

0 ⊕ dt ⊕Bt
0 ⊕Bt

26 ⊕Bt
56 ⊕Bt

89 ⊕Bt
94 ⊕Bt

3Bt
67 ⊕Bt

11Bt
13

⊕Bt
17Bt

18 ⊕Bt
27Bt

59 ⊕Bt
36Bt

39 ⊕Bt
40Bt

48 ⊕Bt
50Bt

79 ⊕Bt
54Bt

71

⊕Bt
58Bt

63 ⊕Bt
61Bt

65 ⊕Bt
68Bt

84 ⊕Bt
8Bt

46Bt
87 ⊕Bt

22Bt
24Bt

25

⊕Bt
70Bt

78Bt
82 ⊕Bt

86Bt
90Bt

91Bt
93,

St+1
i := St

i+1 for i ∈ {0, . . . , 31} ,

St+1
32 := zt ⊕ St

0 ⊕ St
2 ⊕ St

7 ⊕ St
9 ⊕ St

10 ⊕ St
15 ⊕ St

23 ⊕ St
25 ⊕ St

30 ⊕ St
8St

15 ⊕ St
12St

16

⊕ St
13St

15 ⊕ St
13St

25 ⊕ St
1St

8St
14 ⊕ St

1St
8St

18 ⊕ St
8St

12St
16 ⊕ St

8St
14St

18

⊕ St
8St

15St
16 ⊕ St

8St
15St

17 ⊕ St
15St

17St
24 ⊕ St

1St
8St

14St
17 ⊕ St

1St
8St

17St
18

⊕ St
1St

14St
17St

24 ⊕ St
1St

17St
18St

24 ⊕ St
8St

12St
16St

17 ⊕ St
8St

14St
17St

18

⊕ St
8St

15St
16St

17 ⊕ St
12St

16St
17St

24 ⊕ St
14St

17St
18St

24 ⊕ St
15St

16St
17St

24

⊕ ¬St
1¬St

2 · · · ¬St
30¬St

31¬St
32,

where zt and dt are computed as described in Subsection 6.1.4.

6.3 Keystream Generation
At the end of the state initialization, the 33-bit (initial) state of NFSR1 is

(
S512

0 , . . . , S512
32

)
and the 95-bit (initial) state of NFSR2 is

(
B512

0 , . . . , B512
94

)
. The first keystream bit

that is used for plaintext encryption is z512. For t ≥ 512, the states
(
St+1

0 , . . . , St+1
32

)
and

(
Bt+1

0 , . . . , Bt+1
94

)
and the output bit zt are computed using the relations given in

Subsection 6.1. Fig. 1 depicts the structure of Draco during keystream generation.
As Draco is designed to be operated in packet mode, the maximum size of a plaintext

packet encrypted under the same key/IV pair is 232 bits and no key/IV pair may be used
more than once, i.e., for more than one packet. Let X =

(
x0, . . . , x|X|−1

)
denote such

a plaintext packet and let z512, z513, . . . be the keystream generated for it as described
before. Then the corresponding ciphertext packet Y =

(
y0, . . . , y|X|−1

)
can be produced

via yi := xi ⊕ zi+512, i = 0, . . . , |X| − 1. Decryption (given that the secret session key and
the public IV are known) works analogously.
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Note that, though we use the terms plaintext/ciphertext packet here, Draco is really
a (synchronous) stream cipher. I.e., the keystream bits z512, z513, . . . are generated in a
bitwise fashion (and independently of the plaintext/ciphertext) and, consequently, the
individual plaintext bits xi can be encrypted and then (in the form of yi) transmitted as
they arrive. The same obviously holds for the decryption of the ciphertext bits yi.

7 Design Considerations
In this section, we provide additional explanations w.r.t. our design, which were omitted
in Section 6 for the sake of clarity. As Draco has a Grain-like structure, we particularly
focus on respective similarities and differences. Based on several of the following properties,
we will then argue in Section 8 why we believe that Draco resists the currently known
types of attacks against stream ciphers.

7.1 The Key-IV Schedule
The Key-IV Schedule defined in Subsection 6.1 is designed in such a way that for all t ≥ 0
the mapping Dt : {0, 1}32 × {0, 1}96 −→ {0, 1}128, defined as

Dt(K0, . . . , K31, IV0, . . . , IV95) := (dt, dt+1, . . . , dt+127)

is a bijective GF(2)-linear mapping. This follows directly from Lemma 5.

Lemma 5. Fix some r ∈ {0, . . . , 96}. The system of GF(2)-linear equations in the
variables u0, . . . , u31, v0, . . . , v96

vr = 0 (1)
u0 ⊕ v0 = u1 ⊕ v1 = · · · = u31 ⊕ v31 = 0 (2)

u0 ⊕ v32 = · · · = u31 ⊕ v63 = 0 (3)
u0 ⊕ v64 = · · · = u31 ⊕ v95 = 0 (4)

u0 ⊕ v96 = u1 ⊕ v0 = · · · = u31 ⊕ v30 = 0. (5)

has only one solution: u0 = · · · = u31 = v0 = · · · = v96 = 0.

This system corresponds the situation that t is chosen in such a way that the constant
0 is added at position t + r, which is the case if r ≡ 97− t mod 97. Moreover, (u0, . . . , u31)
is obtained from (K0, . . . , K31) by some cyclic shift, and (v0, . . . , v96) is obtained from
(x0, . . . , x96) by a cyclic right shift by r positions.

Proof. Note that us = 0 for s = r mod 32 follows from vr = 0. This implies vs−1 = 0 (by
(5)) and us−1 = 0 (by (2)) and vs−2 = 0 (by (5)) and us−2 = 0 (by (2)) and so on, i.e.,
us = us−1 = · · · = u0 = 0. On the other hand, vs = 0 (by (2)) which implies us+1 = 0
(by (5)) which implies vs+1 = 0 (by (2)) and so on, i.e., us = us+1 = · · · = u31 = 0. As all
u-bits are zero, by (2-5), all v-bits have to be zero, too.

Note that the bijectivity of Dt makes Draco immune against the following type of
chosen-IV TMDTO-attacks, which we call Zero d-stream attacks.

7.1.1 Zero d-stream Attacks

Let K(0) ⊆ {0, 1}32 be the set of all key prefixes kpre for which there is some initial value
IV ∈ {0, 1}96 such that dt(kpre, IV ) = 0 for all t ≥ 0. Correspondingly, let IV(0) ⊆ {0, 1}96

be the set of all initial value IV ∈ {0, 1}96 for which there is a key prefix kpre ∈ {0, 1}32

such that dt(kpre, IV ) = 0 for all t ≥ 0. For all volatile internal states S ∈ {0, 1}128 let
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Z0⃗(S) denote the block of the first 128 keystream bits generated on S under the condition
that the corresponding 128 d-stream bits are all zero.

Offline

1. The attacker computes K(0) and IV(0)

2. The attacker computes Z0⃗(S) for 296 randomly and mutually independently chosen
internal states S ∈ {0, 1}128 and stores them in a database D.

Online

3. The attacker asks for the keystream packet P (k∗, IV ) ∈ {0, 1}32, k∗ ∈ {0, 1}128

the secret key, for all initial values IV ∈ IV(0) and checks if P (k∗, IV ) ∈ {0, 1}32

contains a sub block D of length 128 which occurs in D.

4. In the case that a collision D = Z0⃗(S) was found, compute k∗ from S.

Note that if k∗ ∈ K(0) then, in step 3, the attacker knows the packet P (k∗, IV ∗) for some
IV ∗ ∈ IV(0). This packet contains 232 keystream blocks Z0⃗(S′) for the internal state
S′ ∈ {0, 1}128. By the birthday paradox, there will be a collision with D which yields the
secret key. If k∗ ̸∈ K(0) then the attack fails. Consequently, the success probability of the
attack is around |K(0)| · 2−32, while the cost is at least 296.

Due to the fact that Dt is bijective for all t ≥ 0 (see Subsection 7.1) we have that
|K(0)| = |IV(0)| = 1, which implies that the Zero d-stream attack against Draco does
not beat exhaustive key search.

7.2 NFSR1
NFSR1 is 33 bits wide and replaces the maximum-length LFSR of the Grain family.
Especially in view of the halved size of the cipher’s volatile inner state (128 bits for Draco
vs. 256 bits for Grain-128a), employing an NFSR is favorable here in order to strengthen
the design against algebraic and fast correlation attacks such as [TIM+18]. Unfortunately,
not much is known yet about how to generically construct large, cryptographically strong
NFSRs with maximal period. For FSR sizes up to 30–40 bits, however, corresponding
non-linear feedback functions can be found experimentally. In [GGK06], the designers of
the eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80 provide
a list of 13 such NFSRs, ranging in size from 21 bits (NFSR A0) to 33 bits (NFSR A12).
The latter is perfectly sufficient for our design as, due to the restriction to packet mode
with a maximum of 232 keystream bits per key/IV pair, Draco actually does not need as
large guaranteed periods as the Grain family.

While in the original Grain family, an all-zero LFSR initial state is tolerable due to the
FSRs’ sizes (both of key length), this must strictly be avoided for small-state Grain-like
stream ciphers. More precisely, for one in 233 key-IV combinations, the Grain-like mixing
employed by Draco during state initialization will result in an all-zero state of NFSR1. In
this situation, NFSR A12 of ACHTERBAHN would be stuck in the all zero-state, because
(like a maximum-length LFSR of this size) it ‘only’ has period 233− 1 for non-zero starting
states. On contrast, Draco’s NFSR1 yields truly maximal period 233 for any starting
state. This is achieved by adding the term ⊕¬St

1¬St
2 · · · ¬St

31¬St
32 to ACHTERBAHN’s

NFSR A12 as described in Section 6.1, thus simply ‘gluing’ the all-zero state into the
original state cycle of NFSR A12 between the states (1, 0, . . . , 0) and (0, . . . , 0, 1).

Accordingly, we can assess the security of our NFSR1 on the basis of the following
properties of A12 given in [GGK06]: a nonlinearity of 114688, an order of correlation
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immunity of 6, and a diffusion parameter5 of 54. Moreover, it is easy to see that A12’s
feedback function is balanced and, thus (as it is 6th order correlation-immune), 6-resilient.
For comparison, in Grain-128a the feedback function of the LFSR (which is replaced by
NFSR1 in Draco) has resiliency 5. Finally, the algebraic degree of A12’s feedback function
is 4.

A major reason for choosing A12 from ACHTERBAHN as a basis for Draco’s NFSR1
is also its hardware efficiency. Despite a comparatively large algebraic normal form, the
designers of ACHTERBAHN are able provide a compact hardware realization of A12’s
feedback function consuming only 31.75 gate equivalents (GE) and having logical depth
three (see Sec. 9 for further details w.r.t. hardware complexity and an explanation of
corresponding units of measure like GE).

7.3 NFSR2
NFSR2 is 95 bits wide and its feedback polynomial is a modified version of g from Grain-
128a [ÅHJM11]. In contrast to NFSR1, the period of NFSR2 during keystream generation
is unknown because even after state initialization, it is not operated in a self-contained
manner. More precisely, due to the masking bit from NFSR1 and the KIS bit dt, NFSR2 is
actually a filter instead of a real NFSR (cf. corresponding remark for the Grain family in
[HJMM08]).

As described in Section 6.1, for f2 of Draco we shifted six taps of g from Grain-128a
by two positions to the left in such a way that the property of g that no tap appears
more than once is preserved in f2. Moreover, we added the following monomials to further
strengthen Draco in the face of its smaller volatile inner state: Bt

36Bt
39, Bt

50Bt
79, Bt

54Bt
71,

Bt
58Bt

63, Bt
8Bt

46Bt
87. Note that the set of tap indices of these new nonlinear monomials is

disjoint from the set of tap indices of all other monomials of f2. In consequence, several
important properties of g from Grain-128a like its balancedness and its resiliency of 4
carry over to f2. Similarly, the security of f2 of Draco w.r.t. linear approximations can
hence be lower boundend by that of Grain-128a (214 best linear approximations with bias
63 · 2−15). As proven in [MJSC16], the aforementioned disjointness property w.r.t. the
newly added taps implies that the nonlinearity of f2 of Draco can be computed on the
basis of the nonlinearity of g from Grain-128a (267403264) and its number of variables
(29) together with the nonlinearity of the sum of the new monomials (976) and its number
of variables (11) as follows: 211 · 267403264 + 229 · 976− 2 · 267403264 · 976 = 549656723456
(≈ 239). As for g from Grain-128a, the algebraic degree of f2 of Draco is 4.

Beyond these properties, g has so far successfully thwarted all cube-like attacks against
the initialization of Grain-128a. In Section 8.3, we derive corresponding security arguments
for Draco.

7.4 Output Function a

An important question in FSR-based stream cipher design is how to share the load of
ensuring security between the driving register(s) and the output function. To compensate
for the fact that the volatile inner state of Draco is smaller than that of Grain-128a,
we decided that the output function should have more inputs and larger algebraic degree
instead. It builds on the construction scheme introduced in [MJSC16] as part of the FLIP
family of stream ciphers. More precisely, Draco’s output function a can be written as
the direct sum of a linear function with seven monomials, a quadratic function with four
monomials, a triangular function with seven monomials, a triangular function with three

5The diffusion parameter λ was determined experimentally in [GGK06] and denotes “the minimum
number of clock cycles needed in order to transform any two initial states of the shift register Aj of
Hamming distance 1 into shift register states of Hamming distance close to Nj/2” (Nj denotes the size of
the shift register Aj).
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monomials, and another triangular function with four monomials, where each tap of NFSR1
and NFSR2 appears at most once in a.

As a consequence, the output function of Draco is defined over 59 variables, balanced,
and has, according to lemmata 3–6 in [MJSC16], the following security properties: a
nonlinearity of 287580136809693184 (≈ 257), a resiliency of 9, an algebraic immunity of at
least 7, and a fast algebraic immunity of at least 8. The algebraic degree of a is 7.

If the content of NFSR1 at time t should be known to the attacker (e.g., as part of a
guess-and-determine attack), the output function still depends on at least 44 variables and
‘gracefully degrades’ into the direct sum of a linear function with eight or nine (depending
on the value St

3) monomials, a quadratic function with four to six (depending on the values
St

20 and St
6St

29) monomials, and a triangular function with seven monomials, which again
conforms to the construction principle introduced in [MJSC16] and leads to the following
worst-case security properties for that situation: a nonlinearity of 8634823344128 (≈ 242),
a resiliency of 8, an algebraic immunity of at least 7, and a fast algebraic immunity of at
least 8.

While the choice of tap positions for state update functions is often already restricted
by the need to guarantee a certain period (e.g., as in the case of NFSR1), the choice of tap
positions for an output function is commonly less substantiated. For example, the design
documents introducing the members of the Grain family (cf. [HJM06, ÅHJM11, HJMM08])
mainly focus on the conceptual question whether certain taps used in the output function
should be from the NFSR or the LFSR (and how many of each). The more concrete
question of which tap positions within each FSR are actually chosen for the output function
is almost exclusively discussed in the context of hardware acceleration or when it comes to
mitigate issues of previous versions arising from actual attacks (e.g., the attack of Dinur
and Shamir [DS11] on Grain-128, which lead to a change of tap positions in the output
function of Grain-128a [ÅHJM11]).

In the absence of canonical criteria for the selection of tap positions for Grain-like
constructions, we mainly resort to the concept of (full) positive difference sets that was
used by Golić in [Gol96] to assess the security of nonlinear filter generators consisting of a
single LFSR and a nonlinear output function. Note that, e.g., the fast correlation attacks
against Grain v1 and Grain-128a presented in [TIM+18] actually match this cipher model
as they treat Grain’s NFSR as (part of) a filter for its LFSR. For further details about
Golić’s findings and how they influenced Draco’s output function, we refer the reader to
Appendix B.

Another cryptanalytic result motivating our selection of tap positions for the output
function of Draco are attacks based on binary decision diagrams (BDDs). A direct
consequence of this type of attack against stream ciphers, which was introduced by Krause
in [Kra02] and applied to Grain-128 by Stegemann in [Ste07], is that (roughly speaking)
the distance between the lowest and the highest tap index of a monomial should be large
for as many monomials as possible (see Section 8.6 for further details).

7.5 Continuous Key and IV Usage
In this subsection, we provide further details about how the generic CIVK construction
introduced in Subsection 3.2 is instantiated concretely through Draco. In particular,
we argue about the choice of the different parameter lengths. With Draco we want to
achieve a security level of 128 bits. Accordingly, the key length is chosen to be 128 bits.

As Draco is designed to operate in packet mode and a key/IV pair may be used to
generate at most 232 keystream bits, the key prefix length is log2 232 = 32 bits. This also
determines the length of the initial value: As the desired security level is 2128 and the packet
length is 232 bits, we need to set the length of the initial value to be 128− 32 = 96 bits.
This corresponds to a total volatile internal state size of 128 bits and a total non-volatile
internal state size of 128 bits.
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It is easy to see that Draco’s mixing phase in fact realizes a bijection (between the
256-bit internal states at t = 0 and those at t = 512) as assumed by our security proof for
the CIVK construction given in Section 5. Draco deviates from the generic construction
scheme only in a tiny detail. During key loading at t = 0, the first key bit is inverted (i.e.,
B0

0 := K0⊕ 1). This is to avoid the “sliding property” of Grain v1 and Grain-128 that was
pointed out in [DCKP08] (see Section 8.4 for further details). In terms of our TMDTO
security proof, however, this modification is completely irrelevant.

7.6 Packet Mode
Stream ciphers have a long history when it comes to protecting digital communication.
In 1987, Rivest designed RC4 [Sch95], which was later used in SSL/TLS [DR08] and the
wireless network security protocols WEP [Ins97] and TKIP (often called WPA) [Ins04].
Other well-known stream cipher examples are E0 of the Bluetooth standard [SIG14] and
A5/1 of GSM [BGW99]. Unfortunately, E0 and A5/1 have been shown to be highly
insecure (see, e.g., [LMV05] and [BB06]) and RC4 also shows severe vulnerabilities, which
led to its removal from the TLS protocol [Pop15] and rendered other protocols like WEP
insecure [FMS01]. In 2004, the eSTREAM project [ECR08] was started in order to identify
new stream ciphers for different application profiles. In the hardware category, aiming at
devices with restricted resources, three ciphers are still part of the eSTREAM portfolio
after the latest revision in 2012: Grain v1 [HJM06], MICKEY 2.0 [BD06] and Trivium
[CP05].

Grain v1 uses 80-bit keys, 64-bit IVs and the authors do not give an explicit limit on
the number of keystream bits that should be generated for each key/IV pair. MICKEY
2.0 uses 80-bit keys, IVs of variable length up to 80 bit and the maximum amount of
keystream bits for each key/IV pair is 240. Trivium uses 80-bit keys, 80-bit IVs and at
most 264 keystream bits should be generated for each key/IV pair.

Interestingly, all three ciphers of the eSTREAM hardware portfolio are obviously
designed for potentially very large keystream sequences per key/IV pair. In contrast, the
aforementioned transmission standards all use much smaller packet sizes. For example,
A5/1 produces only 228 keystream bits per key/IV pair, where the session key is 64 bits
long and the IV corresponds to 22 bits of the publicly known frame (i.e., packet) number.
Similarly, Bluetooth packets contain at most 2790 bits for the so-called basic rate. The
Bluetooth cipher E0 takes a 128-bit session key and uses 26 bits of the master’s clock,
which is assumed to be publicly known, as the packet-specific IV. For wireless local area
networks (WLANs), the currently active IEEE 802.11-2020 standard [Ins21] implies that
at most 11454 bytes (i.e., < 217 bits) are encrypted under the same key/IV pair using
CCMP. Another widespread example for encryption on a per-packet basis is SSL/TLS,
which underlies HTTPS and thus plays a vital role in securing the World Wide Web. In
the most recent version, TLS 1.3 [Res18], the maximum amount of data encrypted under
the same key/IV pair is 214 + 28 bytes (i.e., 217 + 211 < 218 bits), as long as RC4, which is
now forbidden for all TLS versions by RFC 7465 [Pop15], is not used.

Considering the above examples, Draco’s maximum packet length of 232 bits should
be more than sufficient for most communication scenarios in the foreseeable future.

8 Cryptanalysis
In the following subsections, we will argue for several types of attacks which weakened or
even broke other stream ciphers in the past, why we believe that Draco will resist them.
In Section 4 we already argued about time-memory-data tradeoff attacks against the CIVK
construction that underlies Draco.
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The discussion in this section will build on a variety of results that illuminate the
security of Grain-v1 against these attacks, and that address a number of established security
parameters. Since Grain and Draco are very similar in the structural elements relevant to
algebraic and correlation attacks, it seems sufficient to us in the given context to describe
the extent to which Draco meets or exceeds the design criteria relevant to Grain’s security.
Of course, this does not mean provable security against every conceivable variant of such
attacks. But establishing a more extended and detailed formal framework for formally
proving the security of grain-like ciphers would have to go beyond the existing state of the
art and would thus be a challenging scientific project in its own right, clearly beyond the
scope of this paper. We think that further development of this formal framework should
come from new attacks ideas being published from within the scientific community.

8.1 Correlation Attacks, Linear Approximations
Correlation and fast correlation attacks like those in [MJSC16, TIM+18, ZGM17, TMA20,
WLLM19] are a major threat to Grain-like stream ciphers. They target the cipher’s LFSR
and are based on finding sufficiently biased linear approximations of the NFSR’s feedback
as well as of the output function. In Draco, Grain’s LFSR is replaced by NFSR1 with
high nonlinearity and correlation immunity. Moreover, the output function has much
more inputs, a higher resiliency and a much higher nonlinearity than that of Grain-128a.
Furthermore, the feedback function of NFSR2 was additionally hardened as explained in
Section 7.3.

In [MJSC16], Méaux et al. point out the importance of “good balancedness, non-linearity
and resiliency properties” of the filtering function in order to withstand correlation attacks
[Sie85] and fast correlation attacks [MS89]. As explained in Section 7.4, Draco features a
rather heavy output function to compensate for the smaller volatile part of the inner state
compared to the original Grain family. It is defined over 59 variables and has nonlinearity
of about 257, whereas the output function of Grain-128a is defined over 17 variables and
has nonlinearity 61440. Moreover, the resiliency of Draco’s output function is 9 compared
to 7 for that of Grain-128a.

In [BGM06], Berbain, Gilbert and Maximov present an attack on Grain v0 that combines
linear approximations of the NFSR’s feedback function and of the output function in
order to recover the initial state of the LFSR given a sufficient amount of keystream
bits. As possible countermeasures, Berbain, Gilbert and Maximov proposed the following
modifications [BGM06]: “Introduce several additional masking variables from the NFSR in
the keystream bit computation”, “replace g by a 2-resilient function”, “modify the filtering
function h in order to make it more difficult to approximate” and “modify the function g
and h to increase the number of inputs”. For Grain-128a, the feedback function g of the
NFSR was constructed with the above attack in mind. The designers state: “The best
linear approximation of g is of considerable interest, and for it to contain many terms,
we need the resiliency of the function g to be high. We also need a high nonlinearity in
order to obtain a small bias.” As a consequence, g was chosen such that it has nonlinearity
267403264 (≈ 228) and resiliency 4.

As explained in Section 7.3, the feedback function f2 of NFSR2 in Draco builds on
that of Grain-128a in a way that preserves its balancedness and resiliency, but features
an even higher nonlinearity (≈ 239). Moreover, in accordance with the above suggestions
from [BGM06] and the construction principle underlying g of Grain-128a (see previous
paragraph), the output function of Draco has more than three times as many inputs, a
much higher nonlinearity and a higher resiliency than that of Grain-128a (cf. values at
the beginning of this subsection) in order to strengthen it against linear approximations.
In particular, it is defined over the state variables of both FSRs, featuring monomials
of all degrees between one and seven defined over NFSR2 (cf. triangular function T (1)

t

in Section 6.1.4), monomials of degrees one, two, and three over NFSR1 (cf. triangular
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function T (2)
t ), and monomials of degrees two, three, and four with variables from both

FSRs mixed (cf. triangular function T (3)
t ).

Also note that (fast) correlation attacks against Grain-like structures as published
in [MJSC16, TIM+18, ZGM17, TMA20, WLLM19] target the ciphers’ LFSR. However,
as described in Section 7.2, the Grain family’s LFSR is replaced by an NFSR with high
nonlinearity and correlation immunity for Draco. This approach was already employed
for Lizard, which is the only Grain-like stream cipher completely unaffected by (fast)
correlation attacks, so far.

In [TMA20], Todo, Meier and Aoki study the data limitation of small-state stream
ciphers in the context of correlation attacks. For Plantlet, which targets 80-bit security,
they can recover the secret key if about 253 keystream bits per key/IV combination are
available. Fortunately, this condition cannot be met in practice as the cipher’s designers
set a corresponding limit of 230 bits, which is considered “conservative” by Todo, Meier
and Aoki. In line with these findings, Draco (whose key and and state size are larger
than those of Plantlet) has a maximum packet length of 232 bits.

Finally, as explained in Section 7.4, the choice of tap positions for Draco’s output
function follows the concept of (full) positive difference sets, which was introduced by Golić
in [Gol96] as a design criterion to strengthen nonlinear filter generators against correlation
attacks.

8.2 Algebraic Attacks
For algebraic attacks against Draco, one has to differentiate between two basic approaches.
First, an attacker could express observed keystream bits as functions of the unknown 128
key bits and then try to solve the corresponding system of equations. This, however, would
require to include all state transitions down to t = 0. Given that both FSRs are nonlinear
and considering the high algebraic degree of the output function (which is used as part of
the state update in phase 2 of the state initialization), this is clearly more complex than
the following second attack approach: expressing observed keystream bits as functions
of the unknown 128 bits of the volatile initial state at t = 512 and the unknown 32-bit
key prefix (used continuously during keystream generation) and then trying to solve the
corresponding system of equations. Consequently, for the remainder of this subsection, we
will focus on the second approach.

First of all, note that, to the best of our knowledge, no successful (i.e., having complexity
lower than 2128) algebraic attacks that can recover arbitrary initial states for Grain-128a
have been reported so far.6 Due to the smaller volatile inner state of Draco, the number
of variables of the corresponding system of equations in such an attack would now in fact
be lower. This, however, is compensated for by the larger degree of the output function,
which is now 7 as compared to 3 for Grain-128a. As pointed out in Section 7.4, Draco’s
output function builds on the construction scheme introduced in [MJSC16], depends on 59
variables, has nonlinearity of about 257, algebraic immunity of at least 7 and fast algebraic
immunity of at least 8. In addition, now both FSRs are nonlinear and NFSR1, which
corresponds to the LFSR of the original Grain-family, has algebraic degree 4. Furthermore,
we hardened NFSR2 against algebraic attacks by adding five more nonlinear monomials
as compared to g in Grain-128a (cf. Sec. 7.3). Based on these properties, we expect
that algebraic attacks against full Draco will not have complexity lower than that of
exhaustive key search.

6The currently best result seems to be an algebraic attack by Berbain, Gilbert and Joux against a
modified version of Grain-128, which requires 2115 computations and 239 keystream bits [BGJ09]. They
point out, however, that “[t]his attack is not applicable to the original Grain-128”. Moreover, note that the
required amount of keystream bits (belonging to a single initial state) would not be available for Draco
due to the maximum packet length of 232 bits.
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Also note that even when guessing the shorter NFSR1, Draco’s output function
still depends on at last 44 variables and has, inter alia, the following worst-case security
properties: nonlinearity of about 242, algebraic immunity at least 7, and fast algebraic
immunity at least 8. For comparison, the full output function of Grain-128a depends on
17 variables, has nonlinearity 61440 and algebraic degree 3. Thus, in the context of a
corresponding guess-and-determine attack, an algebraic attack on NFSR2 similar to the
one in [BGJ09] will have large enough complexity.

Guessing the larger NFSR2 is even less promising from an attacker’s point of view.
Due to its size of 95 bits and the 128-bit security level targeted by Draco, a successful
state-recovery attack against the full cipher would have to subsequently recover the 33-
bit inner state of NFSR1 and the 32-bit key prefix underlying the key-IV-schedule with
time/memory/data complexity below 2128−95 = 233. In particular, these 65 remaining
unknowns also influence the further state updates of NFSR2, which, on contrast to NFSR1,
is not operating autonomously during keystream generation. So while in this phase guessing
NFSR1 allows to eliminate it (including its feedback function and its contribution to the
output function) from subsequent steps of the cryptanalysis, this is not the case when
guessing NFSR2. That is, an attacker guessing NFSR2 would have to recover 65 unknowns
with time/memory/data complexity below 233, while still being faced with both feedback
functions and the full output function of Draco.

8.3 Conditional Differentials, Cube Attacks
In [LM12], Lehmann and Meier study the security of Grain-128a against dynamic cube
attacks and differential attacks. They come to the following conclusion: “To analyse the
security of the cipher, we study the monomial structure and use high order differential
attacks on both the new and old versions. The comparison of symbolic expressions suggests
that Grain-128a is immune against dynamic cube attacks. Additionally, we find that it is
also immune against differential attacks as the best attack we could find results in a bias at
round 189 out of 256.” The currently best key-recovery cube attack against round-reduced
Grain-128a is presented in [TIHM17]. It is based on the division property and works for
183 initialization rounds.

Draco has 512 rounds in phase 2 of the state initialization, where the Grain-like
mixing is performed as described in Section 6.2. On top of that, from the second half of
phase 2 onwards (i.e, for all t ≥ 256), the 32-bit prefix of the secret key is continuously
involved in the state update of NFSR2.

Note that the volatile inner state of Draco (128 bits) is smaller than that of Grain-128a
(256 bits), whereas the output function is much more dense. It depends on 59 variables as
compared to 17 in Grain-128a. The output function of Draco also has more nonlinear
monomials (15) than that of Grain-128a (5). Moreover, now both FSRs are nonlinear
and the feedback function of NFSR1 is defined over more inputs (40 vs. 19) and has more
nonlinear monomials (15 vs. 10) than that of Grain-128a’s NFSR.

The combination of a smaller volatile state and more dense feedback and output
functions causes a faster diffusion of differentials and of the monomial structure for Draco.
Together with the doubled number of initialization rounds, this should make Draco at
least as resistant against differential attacks and cube attacks as Grain-128a, which seems
to be already sufficiently secure in that respect.

In 2021 Horn [Hor21] studied the resistance of an earlier version of Draco against cube
attacks. Since then, the key-IV-schedule was slightly changed to prevent the zero d-stream
attacks mentioned in Subsubsection 7.1.1. In particular the work by Horn considers a key
prefix of length 33 instead of 32 and an IV of length 95 instead of 96 with an additional
0-prefix. This will not significantly change the results obtained in the analysis against
cube attacks.
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Horn [Hor21] considered only 99 and 100 initialization rounds instead of the full 512
as “the superpoly recovery for Draco frequently turned out to become computationally
infeasible even for a very small number of initialization rounds.” Horn observed that in
each clock cycle only one IV bit enters the internal state of NFSR2. He found practical
distinguishers for 99 and 100 initialization rounds. Yet, he was not successful in attacking
101 initialization rounds. The author states that “it was not possible to recover the
superpoly of a cube just a few rounds after the cube variable with the highest index is
introduced.” Further, since Draco uses 512 initialization rounds, Horn considers the
margin more than sufficient to provide very high security against his cube attacks. Horn
concludes that the “extremely fast growing complexity of these superpolys of an even
simplified version of Draco, again supports our assumption that Draco is extremely
resistant against the considered attack.”

8.4 Slide Attacks, Related Key Attacks
In [Küç06], Küçük first pointed out a sliding property of the state initialization of Grain v1,
which was later formally published by De Cannière, Küçük and Preneel in [DCKP08]
as: “For a fraction of 2−2·n of pairs (K, IV ), there exists a related pair (K∗, IV ∗) which
produces an identical but n-bit shifted key stream.” In the same paper, the authors
describe how this property can be exploited to speed up exhaustive key search for Grain v1
(and also for Grain-128) by a factor of two.7 In addition, they also suggest a related-key
slide attack, for which they note: “As is the case for all related key attacks, the simple
attack just described is admittedly based on a rather strong supposition.” [DCKP08] As a
reaction, the designers of Grain-128a changed the 22-bit constant (1, . . . , 1) that was used
in the state initialization of Grain-128 to (1, . . . , 1, 0).

In Draco, no constants are used during state initialization. Instead, to avoid the above
sliding property, we set B0

0 := K0 ⊕ 1 in phase 1 of the state initialization (cf. Sec. 6.2).
As a result, for a key/IV pair (K, IV ), a related key/IV pair (K∗, IV ∗) in the sense of
[DCKP08] would have to satisfy

K∗
0 = K1 ⊕ 1. (6)

Let dt and d∗
t denote the key-IV-schedule bits computed on the basis of (K, IV ) and

(K∗, IV ∗), respectively, as described previously in Section 6.1. For the sliding property
from [DCKP08] to occur, dt+1 = d∗

t would need to hold for t ≥ 0. In particular, we get

IV1 = d1 = d∗
0 = IV ∗

0 (7)

and

K1 ⊕ IV1 = d289 = d∗
288 = K∗

0 ⊕ IV ∗
0 . (8)

It is easy to see that equations (6), (7), and (8) cannot be satisfied simultaneously.
Note that, without inverting K0 in phase 1 of the state initialization together with

having different definitions of dt for t ≤ 255 and t ≥ 256, Draco would in fact suffer from
a variant of the sliding property, despite continuously employing the IV and the 32-bit key
prefix for state update during keystream generation.

Let us also point out that, as stated by De Cannière, Küçük and Preneel in [DCKP08]
and cited above, we too consider the supposition underlying related-key attacks to be
rather strong. In particular, we do not claim security for situations where a potential

7More precisely, this speed up refers to making the key candidate checks more efficient. The actual
number of key candidate checks, however, is not reduced compared to exhaustive key search. Still, we
consider such a sliding property undesirable as it might pave the way for other attacks and, hence, seek to
avoid it for Draco.
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victim generates keystream under secret related keys and an attacker tries to recover one or
more of these. Typical motivations of this scenario would be fault attacks (e.g., an attacker
manipulating the secret inner state and/or the unknown key bits via clock glitches, voltage
spikes, optical or electromagnetic fault injection etc.) or the usage of a weak (session) key
derivation method. The latter is obviously a blatant security flaw on its own that needs to
be avoided irrespective of the employed cipher. And for protecting against fault attacks,
various established countermeasures are available on the hardware design level (see, e.g.,
[KSV13] for an overview). Correspondingly, we do not make security claims regarding
other types of side-channel attacks either.

8.5 Weak Key/IV Pairs

In [ZW09], Zhang and Wang introduce the notion of weak key/IV pairs for the Grain
family of stream ciphers. They show that Grain-128 has 296 such pairs, which lead to an
all-zero initial state of the LFSR, and use them to mount distinguishing attacks and initial
state recovery attacks. In [ÅHJM11], the designers of Grain-128a point out: “We note
that the IV is normally assumed to be public, and that the probability of using a weak
key-IV pair is 2−128. Any attacker guessing this to happen and then launching a rather
expensive attack, is much better off just guessing a key.”

In analogy to the definition of Zhang and Wang, weak key/IV pairs for Draco
would lead to an all-zero initial state of NFSR1. Such pairs, however, are now completely
unproblematic (and, hence, not weak anymore) as the 33-bit-wide NFSR1 has truly maximal
period 233. In particular, unlike the LFSR of the Grain family, it cannot get stuck in the
all-zero state.

Note that without adding the term ⊕¬St
1¬St

2 · · · ¬St
30¬St

31¬St
32 to ACHTERBAHN’s

NFSR A12 for obtaining NFSR1 of Draco (cf. Sec. 6.1), there would have actually been
about 2191 weak key/IV pairs out of 2224 total key/IV pairs, leading to a probability of
2−33 for using a weak pair. Thus, corresponding attacks might have posed a real threat to
Draco, which is now avoided.

8.6 BDD-based Attacks

In [Kra02], Krause introduced the idea of using binary decision diagrams (BDDs) to attack
LFSR-based stream ciphers like A5/1 of the GSM standard or E0 of Bluetooth. Stegemann
later showed in [Ste07] how this approach can be transferred to NFSR-based stream ciphers
like Trivium and Grain.

In contrast to TMD tradeoff attacks or correlation attacks, which potentially require a
lot of known keystream, BDD attacks are short-keystream attacks in the sense that only
the information-theoretic minimum of keystream bits (i.e., often only few more than n
bits of keystream for a keystream generator of inner state length n) is required to recover
the corresponding initial state.

While we are currently not aware of any BDD attack faster than exhaustive key search
against any member of the Grain family, the major design consequence of the BDD-related
cryptanalytic results that Stegemann obtained for Grain-like stream ciphers is that the
maximum number of what he calls active monomials of the feedback functions and the
output function should be as large as possible (see [Ste07] for further details). In the
setting of Stegemann, for Grain-128a, the maximum number of active monomials would be
0 for the LFSR, 3 for the NFSR and 3 for the output function. In comparison, for Draco,
the maximum number of active monomials would be 19 for NFSR1, 6 for NFSR2 and at
least 10 for the output function a. Consequently, we expect that, despite the smaller
volatile inner state, Draco will also resist BDD attacks.
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8.7 Preventing Banik et al. and Esgin-Kara Attacks
Banik’s attack [BCI+21] against Sprout is based on the LFSR-property that the constant
zero internal state occurs in Sprout with a certain probability. This state generates a
stream of zeros. As Draco does not use any LFSR, this attack can not applied to Draco.

The Banik, Baroti, Isobe attack against Plantlet [BBI19] exploits Plantlet’s property
that pairs of internal states which differ only in position 43 generate identical keystream
blocks of length 41. This property is due to the comparatively large distance between
certain taps of Plantlet’s LFSR. To prevent this type of attack, the Atom stream cipher uses
an additional second key filter which is driven by a 7-bit LFSR. As all pairs of neighbored
taps of both of Draco’s NFSRs have a sufficiently small distance, the BBI-attack can not
be applied to Draco. This is the reason why we decided to use only a simple cyclic filter
as key schedule for Draco, and not an LFSR-driven one.

The Esgin-Kara attack against Sprout [EK15] uses the fact that the key bits coming
from the key filter are multiplied by a term depending on the volatile state. These key bits
can be shown to be zero in certain clock cycles. This implies that certain keystream blocks
do only depend on the volatile internal states, which allows for nontrivial TMDTO-attacks.
This type of attack can not be applied to Draco as the d-bits coming from the Draco
key-IV schedule are linearly added to the state update function of NFSR1. Moreover, the
Draco key-IV schedule has the property that each 128-bit key stream block depends
on all key prefix- and IV-bits. This prevents attacks like Esgin-Kara’s Subsection 3.4 of
[BCI+21].

9 Hardware Results
In this section, we present the hardware results for our new stream cipher Draco and
compare them to those of Atom [BCI+21] and Grain-128a [ÅHJM11]8, which, like Draco,
accepts 128-bit keys and 96-bit IVs. The reasons for focusing on Grain-128a are twofold.
First, it is a natural choice for comparison due to the close structural relation between
Draco and the Grain family of stream ciphers as explained in sections 6 and 7. Second,
and more importantly, Grain v1 (the 80-bit version of Grain-128a) turned out to be the
most hardware efficient member of the eSTREAM [ECR08] portfolio (see tables 1–4 and
figures 1–3 in [GB08]) and, hence, the Grain family of stream ciphers can be considered as
a benchmark for new designs. Also note that Draco is the first small-state stream cipher
offering full 128-bit security against key recovery and distinguishing attacks, which is why
a comparison to, e.g., Plantlet or Lizard would not be appropriate, here.

Second we chose to compare Draco to Atom. Atom is a lightweight stream cipher
that was recently published in ToSC [BCI+21]. Atom is a reasonable comparison as it
also uses a 128-bit key and it further stores the secret key externally, i.e. it builds upon
CKEY that we introduced earlier. We further implemented a version of Atom that stores
its secret key internally in the hardware module in an additional register that is denoted in
Table 2 as Atom[K]. This is done to allow the comparison to variants of Draco that store
the key prefix, resp. IV, locally in the hardware module as described below. In particular,
for Draco[KI] and Atom[K] there are no dependencies to external resources, as is the case
for Grain-128a.

In line with papers like [Fel07, GB08], which evaluate candidates in the eSTREAM
hardware category, we focus on application-specific integrated circuits (ASICs) with
standard CMOS libraries. ASICs are the prevalent hardware component in lightweight
application scenarios, such as radio frequency identification (RFID) technology, and likewise

8Note that Grain-128a actually comes in two flavors: authenticated encryption and encryption only.
For reasons of fairness, we naturally consider the more lightweight encryption-only variant of Grain-

128a in our comparison to Draco. In fact, the authentication mechanism of Grain-128a is completely
independent of the underlying keystream generator and could as well be used in connection with Draco.
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Table 2: Hardware metrics for Draco and Grain-128a.

Design Area [GE] Power [µW]
100 KHz 1 MHz 10 MHz 100 MHz 1 GHz

Atom 2976 67.9 71.2 104.9 441.9 3811.7
Atom[K] 3858 88.9 92.3 126.1 463.9 3842.3
Grain-128a 2795 67.3 71.6 115.3 551.4 4912.9
Draco 2142 48.8 51.6 79.2 355.6 3119.3
Draco[K] 2368 54.2 57.0 84.7 369.1 3134.1
Draco[I] 2805 64.6 67.7 95.1 372.3 3144.7
Draco[KI] 3025 69.9 72.6 100.6 377.6 3150.0

important for highspeed cryptographic processing, such as bitcoin mining. The two main
restrictions imposed on the design of cryptographic protocols for RFID tags are the circuit
size and the power budget. The circuit size strongly influences the manufacturing costs of
an RFID tag (see [AHM14] for details) and is commonly specified in gate eqivalents (GE),
where one GE corresponds to the area of a two-input drive-strength-one NAND gate. The
power consumption is crucial as low-cost RFID tags are usually passively powered (i.e., via
an electromagnetic field radiated by the reader). In ASIC-based highspeed processing, on
the other hand, energy consumption is becoming the main cost factor (see, e.g., [DV18]).

It is important to note that while the area requirement of cipher designs can be com-
pared over different standard cell libraries by using the measure gate equivalents, “[p]ower
cannot be scaled reliably between different processes and libraries” [GB08]. Consequently,
it is crucial to use the same design flow for all implementations that are to be compared.
In Appendix C.1, we provide a detailed specification of the tools and methodology em-
ployed for deriving the hardware evaluation results summarized in Table 2. After state
initialization, all implementations produce one keystream bit per clock cycle, leading to
identical throughput rates at identical clock speeds.

Remember that in contrast to Grain-128a, half of Draco’s 256-bit inner state is
actually held constant (consisting of the 32-bit key prefix and the 96-bit IV). This allows
for maximizing Draco’s resource efficiency by easily adapting the hardware implementation
to each device’s specific capabilities. For example, if the secret key is burned into the
device or stored in an EEPROM (a common RFID scenario [AHM14], assumed, e.g., by
Plantlet) and the IV is constituted by the device’s frame counter (as, e.g., in A5/1), then
no storage cells for this data need to be allocated inside of the Draco hardware module,
leading to the most lightweight variant labeled Draco in Table 2. If, on the other hand,
the 32-bit key prefix and the 96-bit IV should both be available only at the beginning
of state initialization (as generally assumed by Grain-128a), additional storage cells are
required, leading to Draco[KI]. The variants Draco[K] resp. Draco[I] represent the two
intermediate scenarios that only the 32-bit key prefix resp. the 96-bit IV need to be held
locally in the Draco hardware module.

The numbers presented in Table 2 show that the Draco stream cipher is likewise
attractive for lightweight RFID and highspeed computation scenarios. For example, when
making optimal use of an RFID tag’s resources (i.e., burned/EEPROM key, transmission
counter as IV), Draco requires 23 % less area (2142 vs. 2795 GE) and 31 % less power
(79.2 vs. 115.3 µW) than Grain-128a at a clock frequency of 10 MHz. In the case of high
speed computing, on the other hand, everything comes down to energy consumption. At
a clock frequency of 1 GHz, all four implementation variants of Draco consume about
34 % less energy than Grain-128a for producing 10 kbit of keystream (including state
initialization). In particular, this substantial advantage is achieved even if the 32-bit key
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prefix and the 96-bit IV have to be stored locally inside of the Draco hardware module
(i.e., 32.7 nJ for Draco[KI] vs. 50.4 nJ for Grain-128a; cf. Appendix C.1).

In direct comparison to Atom we can see that Draco needs 28 % less area (2142
vs. 2976 GE) and 24 % less power (79.2 vs 104.9 µW) at a clock frequency of 10 MHz.
Further comparing Atom[K] to Draco[KI] we see improvements of 21 % in area (3025 vs
3858 GE) and an improvement of 20 % in power consumption (100.6 vs 126.1 µW) at a
clock frequency of 10 MHz.

The reason behind this is that already for moderate clock frequencies (here: between 10
MHz and 20 MHz) the dynamic power consumption (due to switching of values) dominates
the static power consumption (due to leakage) of flip-flop storage cells. To the best of our
knowledge, this effect has never been considered in stream cipher design before. Instead, the
classical design paradigm (e.g., followed by Grain-128a, but also by Plantlet and Lizard)
exclusively focused on the number of flip-flops, ignoring their actual usage. With Draco[KI]
we demonstrate that even if a 2n-bit storage is required inside the cipher hardware module
to achieve n-bit security against TMDTO attacks, algorithmically keeping half of this state
constant is much more efficient (cf. Tab. 2) than and equally secure (see Section 8 and
Section 5) as constantly updating the whole of it.

10 Conclusion
In this work we presented the new generic stream cipher construction CIVK and a new
stream cipher proposal called Draco that instantiates CIVK. CIVK provably provides full
volatile state length security against distinguishing attacks providing a solid theoretical
foundation to design stream ciphers upon.

Draco uses a 128-bit key, which is loaded to the volatile state cells of its feedback
shift registers during initialization. A 32-bit prefix of this key, together with a 96-bit initial
value, is continuously employed as part of the state update during keystream generation.
If the key prefix and the initial value are stored ‘externally’ (e.g., inside an EEPROM),
this design requires 23 % less area and 31 % less power than Grain-128a at 10 MHz.

For high-performance environments, we also considered an implementation variant
called Draco[KI] with the key prefix and the initial value stored inside the cipher hardware
module, while still only half of the total internal state is updated during state updates.
When clocked at 1 GHz, this variant consumes about 34 % less energy than Grain-128a,
still providing 128 bits of security and thus challenging the current paradigm of stream
ciphers to always incorporate all internal state bits during state updates.

As future work we suggest to evaluate the performance of Draco on other hardware
platforms like FPGAs or microcontrollers. Moreover it might be interesting to investigate
whether, under the current security guarantees, even more lightweight variants of Draco
are possible, for example by choosing a lighter output function.
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A Test Vectors
Key (128 bits), IV (96 bits) and the corresponding first 128 keystream bits in hexadecimal
notation. To avoid ambiguity, note that, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(K0, . . . , K127) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . , 1) .

Similarly, for the keystream, the example

0x01000000000000000000000000000000

would mean that the first seven keystream bits (i.e., z512, . . . , z518) are zero, followed by a
one bit and 120 more zero bits.

Key: 0x00000000000000000000000000000000
IV: 0x000000000000000000000000
Keystream: 0x6FB3AB21A9B00507CE18710E35FB40AB

Key: 0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
IV: 0xF0F0F0F0F0F0F0F0F0F0F0F0
Keystream: 0xD065AC7B058A2B56523BAC08DE9E93A4

Key: 0x0123456789ABCDEF9876543210FEDCBA
IV: 0xAABCDEF0123456789ABCDEFF
Keystream: 0x45A84DC6F56623EF482989B15E924ED8

B Output Function a: Tap Selection
As pointed out in Section 7.4, due to the absence of canonical criteria for the selection
of tap positions for Grain-like constructions, we mainly resort to the concept of (full)
positive difference sets that was used by Golić in [Gol96] to assess the security of nonlinear
filter generators consisting of a single LFSR and a nonlinear output function. A similar
approach was taken, e.g., for the NFSR-based stream cipher Espresso [DH15] and for the
Grain-like small-state stream cipher Lizard [HKM17b].

Golić defines “for a positive integer λ, call Γ a λth-order positive difference set if λ
is the maximum number of pairs of its elements with the same mutual difference (for
λ = 1, we get a full positive difference set)” [Gol96] and, as a security criterion for output
functions, requires that the taps “should be chosen according to a full or a λth-order
positive difference set, with λ as small as possible” [Gol96].

In line with this, the output function a of Draco has the following properties:

http://eprint.iacr.org/2009/109
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• No taps from NFSR1, except some of those in the additionally required term of f1,
⊕¬St

1¬St
2 · · · ¬St

31¬St
32 (cf. Sec. 6.1), are used at the same time for its feedback

function f1 and the output function. (In Grain-128a, the feedback function of the
LFSR, which corresponds to NFSR1 in our construction, and the output function do
not share any taps, either.)

• The set
{5, 11, 19, 22, 26, 31}

of the tap indices (all from NFSR1) of T (2)
t is a full positive difference set. This

means that each two bits of the internal bitstream of NFSR1 never appear more than
once together as part of this triangular function.

• No taps from NFSR2 are used at the same time for its feedback function and
the output function. (In Grain-128a, the feedback function of the NFSR, which
corresponds to NFSR2 in our construction, and the output function share only a
single tap called “bi+95” in [ÅHJM11].)

• The direct sum Lt +Qt + T (1)
t uses only taps from NFSR2. (To maintain a sufficient

security level even when the content of the smaller NFSR1 is known to the attacker,
e.g., due to guessing; cf. Section 8.2.)

• The set
{7, 15, 32, 47, 53, 66, 76, 80, 92}

of the tap indices (all from NFSR2) of the linear monomials of Lt + T (1)
t + T (3)

t is a
full positive difference set.

• The set
{5, 12, 20, 34, 38, 44, 57, 69, 74, 85}

of the tap indices (all from NFSR2) of the quadratic monomials of Qt + T (1)
t is a full

positive difference set. One consequence of this is that each two bits of the internal
bitstream of NFSR2 can form at most once a quadratic monomial together.

• The sets
{|5− 85|, |12− 74|, |20− 69|, |34− 57|, |38− 44|}

of differences between the two taps (all from NFSR2) of each quadratic monomial in
Qt + T (1)

t and

{|3− 67|, |11− 13|, |17− 18|, |27− 59|, |36− 39|, |40− 48|,
|50− 79|, |54− 71|, |58− 63|, |61− 65|, |68− 84|}

of differences between the two taps (all from NFSR2) of each quadratic monomial in
the feedback function of NFSR2 are disjoint. Hence, even during phase 2 of the state
initialization, each two bits of the internal bitstream of NFSR2 can form at most
once a quadratic monomial together.

• None of the differences

{|5− 85|, |12− 74|, |20− 69|, |34− 57|, |38− 44|}

between the two taps (all from NFSR2) of each quadratic monomial in Qt + T (1)
t

appears as a difference between two taps of a higher degree monomial of T (1)
t .
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• Each of the sets

{23, 49, 83} ,

{6, 33, 51, 73} ,

{4, 29, 43, 60, 81} ,

{9, 14, 35, 42, 55, 77} ,

{1, 16, 28, 45, 64, 75, 88}

of tap indices (all from NFSR2) of the monomials of degree 3, . . . , 7 of T (1)
t is a

full positive difference set. Consequently, each two bits of the internal bitstream of
NFSR2 never appear more than once together as part of each (i.e., the same) of those
monomials.

C Implementation Details
C.1 Hardware Evaluation Setup
As done by Hell et al. for their hardware evaluation of Grain-128AEAD [HJM+19] (a
current round-2 candidate in the NIST Lightweight Cryptography Standardization process),
we target 0.65 nm CMOS process technology and use Synopsys tools for synthesis and
power estimation. More precisely, our results (see Table 2 in Section 9) are obtained via
Synopsys Design Compiler 2018.06-SP4 and are based on the netlist generated for the
Draco reference implementation (see Appendix C.2) employing TSMC’s tcbn65gplus
200a standard cell library.

Like Feldhofer in [Fel07] for his low-power implementations of Trivium and Grain, we
employ clock gating, which is a standard technique for reducing dynamic power consumption
in synchronous circuits. In a nutshell, this means that while an edge-triggered flip-flop is
not supposed to switch values (such as the registers holding the 32-bit key prefix and the
96-bit IV in Draco[KI] for t ≥ 1), its enable port is disconnected from the circuit’s clock
signal.

The switching activity for power estimation (recorded with Synopsys VCS 2018.09-SP1-
1 and fed back to Design Compiler) covers the generation of 10 kbit of keystream (as done
by Good and Benaissa in [GCB06] in their hardware comparison of eSTREAM candidates)
and includes the state initialization of the compared cipher modules. To improve the
accuracy of the results, switching activity for 100 different random key/IV combinations is
considered and the arithmetic mean of the respective power estimates is computed.

As, after state initialization, all cipher implementations compared in Section 9 produce
one keystream bit per clock cycle, energy consumption can be straightforwardly computed
and compared on the basis of power estimates. The only thing which has to be taken
into account here is that Grain-128a performs 256 initialization rounds as compared to
512 rounds for Draco. Consequently, the amount of energy required for producing, 10
kbit of keystream (including state initialization) at a clock speed of 1 GHz is computed
as (10256/(1 GHz)) · (4912.9 µW) = 50.4 nJ for Grain-128a and as (10512/(1 GHz)) ·
(3119.3 µW) = 32.7 nJ for Draco[KI].

The critical path delay of a circuit determines the maximum possible clock frequency
and, hence, the maximum achievable throughput. The worst delay for any of our four
implementation variants of Draco is 560 ps, which corresponds to an achievable clock
frequency of about 1.8 GHz. Also note that where encryption throughputs even larger
than 1.8 Gbit/s are required, the delay can be further reduced by using techniques like
pipelining (as done for the stream cipher Espresso in [DH15]). Moreover, it is possible to
instruct the synthesis tool to optimize for higher clock speeds, which will lead to a circuit
with smaller delay but, inter alia, higher area requirements.
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Finally, note that in terms of chip area, the three implementation variants Draco,
Draco[K] and Draco[I] (see Section 9) would additionally benefit from an external key
and/or IV source (like an EEPROM) which takes over the task of key/IV bit selection
based on an index or supplies the key/IV bits sequentially. However, for reasons of fairness,
in our hardware evaluation we assumed the (from Draco’s point of view worst) situation
that all key and IV bits are provided via separate wires to the cipher module, which then
has to take care of key/IV bit selection itself for computing the key-IV-schedule bit (cf.
reference implementation in Appendix C.2).

C.2 Reference Implementation

Listing 1: Reference implementation of Draco in Verilog.
1 ‘timescale 1us / 1ps
2
3 // **************************************
4
5 ‘define KEY_EXTERNAL
6 ‘define IV_EXTERNAL
7
8 // **************************************
9

10 module draco (
11 input wire clk ,
12 input wire reset ,
13 input wire enable ,
14 input wire [0:127] key ,
15 input wire [0:95] iv ,
16 output wire keystreamBit ,
17 output wire keystreamFlag
18 );
19
20 // //////////////
21
22 wire [0:31] keyPrefix_local ;
23 ‘ifdef KEY_EXTERNAL
24 assign keyPrefix_local = key [0:31];
25 ‘else
26 reg [0:31] keyPrefix_local_reg ;
27 assign keyPrefix_local = keyPrefix_local_reg ;
28 ‘endif
29
30 wire [0:96] iv_local ;
31 assign iv_local [0] = 1’b0;
32 ‘ifdef IV_EXTERNAL
33 assign iv_local [1:96] = iv;
34 ‘else
35 reg [0:95] iv_local_reg ;
36 assign iv_local [1:96] = iv_local_reg ;
37 ‘endif
38
39 // //////////////
40
41 reg [0:0] cipherFSM ;
42
43 localparam S_PHASE2 = 1’b0;
44 localparam S_GENOUT = 1’b1;
45
46 // //////////////
47
48 assign keystreamFlag = cipherFSM [0];
49
50 // //////////////
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51
52 reg [0:32] nfsr1_state ;
53 reg [0:94] nfsr2_state ;
54
55 // //////////////
56
57 wire nfsr1_feedbackBit ;
58
59 // efficient implementation of NFSR1 ’s feedback function as decribed in the

ACHTERBAHN paper (cf. design specs )
60
61 wire nfsr1_feedbackBit_achterbahn ;
62 wire nfsr1_maj , nfsr1_mux1 , nfsr1_mux2 , nfsr1_mux3 , nfsr1_mux4 ,

nfsr1_avoidAllZeroTerm ;
63
64 assign nfsr1_maj = ( nfsr1_state [1] & nfsr1_state [14]) | ( nfsr1_state [1] &

nfsr1_state [18]) | ( nfsr1_state [14] & nfsr1_state [18]) ;
65 assign nfsr1_mux1 = ( nfsr1_state [13]) ? nfsr1_state [15] : nfsr1_state [25];
66 assign nfsr1_mux2 = ( nfsr1_state [16]) ? nfsr1_state [12] : nfsr1_state [15];
67 assign nfsr1_mux3 = ( nfsr1_state [17]) ? nfsr1_state [24] : nfsr1_state [8];
68 assign nfsr1_mux4 = ( nfsr1_mux3 ) ? nfsr1_maj : nfsr1_mux2 ;
69
70 // NOR reduction of nfsr1_state [1:32]
71 assign nfsr1_avoidAllZeroTerm = ~| nfsr1_state [1:32];
72
73 assign nfsr1_feedbackBit_achterbahn = nfsr1_state [0] ^ nfsr1_state [2] ^

nfsr1_state [7] ^ nfsr1_state [9] ^ nfsr1_state [10] ^ nfsr1_state [23] ^
nfsr1_state [30] ^ ( nfsr1_state [15] & nfsr1_state [16]) ^ nfsr1_mux1 ^
nfsr1_mux4 ;

74
75 assign nfsr1_feedbackBit = nfsr1_feedbackBit_achterbahn ^

nfsr1_avoidAllZeroTerm ;
76
77 // //////////////
78
79 wire nfsr2_feedbackBit ;
80
81 assign nfsr2_feedbackBit = nfsr2_state [0] ^ nfsr2_state [26] ^

nfsr2_state [56] ^ nfsr2_state [89] ^ nfsr2_state [94] ^ ( nfsr2_state [3] &
nfsr2_state [67]) ^ ( nfsr2_state [11] & nfsr2_state [13]) ^
( nfsr2_state [17] & nfsr2_state [18]) ^ ( nfsr2_state [27] &
nfsr2_state [59]) ^ ( nfsr2_state [36] & nfsr2_state [39]) ^
( nfsr2_state [40] & nfsr2_state [48]) ^ ( nfsr2_state [50] &
nfsr2_state [79]) ^ ( nfsr2_state [54] & nfsr2_state [71]) ^
( nfsr2_state [58] & nfsr2_state [63]) ^ ( nfsr2_state [61] &
nfsr2_state [65]) ^ ( nfsr2_state [68] & nfsr2_state [84]) ^
( nfsr2_state [8] & nfsr2_state [46] & nfsr2_state [87]) ^ ( nfsr2_state [22]
& nfsr2_state [24] & nfsr2_state [25]) ^ ( nfsr2_state [70] &
nfsr2_state [78] & nfsr2_state [82]) ^ ( nfsr2_state [86] & nfsr2_state [90]
& nfsr2_state [91] & nfsr2_state [93]) ;

82
83 // //////////////
84
85 wire outLin , outQuad , outTri1 , outTri2 , outTri3 ;
86
87 assign outLin = nfsr2_state [7] ^ nfsr2_state [15] ^ nfsr2_state [32] ^

nfsr2_state [47] ^ nfsr2_state [66] ^ nfsr2_state [80] ^ nfsr2_state [92];
88
89 assign outQuad = ( nfsr2_state [5] & nfsr2_state [85]) ^ ( nfsr2_state [12] &

nfsr2_state [74]) ^ ( nfsr2_state [20] & nfsr2_state [69]) ^
( nfsr2_state [34] & nfsr2_state [57]) ;

90
91 assign outTri1 = nfsr2_state [53] ^ ( nfsr2_state [38] & nfsr2_state [44]) ^

( nfsr2_state [23] & nfsr2_state [49] & nfsr2_state [83]) ^ ( nfsr2_state [6]
& nfsr2_state [33] & nfsr2_state [51] & nfsr2_state [73]) ^
( nfsr2_state [4] & nfsr2_state [29] & nfsr2_state [43] & nfsr2_state [60] &
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nfsr2_state [81]) ^ ( nfsr2_state [9] & nfsr2_state [14] & nfsr2_state [35]
& nfsr2_state [42] & nfsr2_state [55] & nfsr2_state [77]) ^
( nfsr2_state [1] & nfsr2_state [16] & nfsr2_state [28] & nfsr2_state [45] &
nfsr2_state [64] & nfsr2_state [75] & nfsr2_state [88]) ;

92
93 assign outTri2 = nfsr1_state [26] ^ ( nfsr1_state [5] & nfsr1_state [19]) ^

( nfsr1_state [11] & nfsr1_state [22] & nfsr1_state [31]) ;
94
95 assign outTri3 = nfsr2_state [76] ^ ( nfsr1_state [3] & nfsr2_state [10]) ^

( nfsr1_state [20] & nfsr2_state [21] & nfsr2_state [30]) ^ ( nfsr1_state [6]
& nfsr1_state [29] & nfsr2_state [62] & nfsr2_state [72]) ;

96
97 assign keystreamBit = outLin ^ outQuad ^ outTri1 ^ outTri2 ^ outTri3 ;
98
99 // //////////////

100
101 reg [8:0] ctr;
102
103 wire [4:0] keyPrefixIndex ;
104 assign keyPrefixIndex = ctr [4:0];
105
106 reg [6:0] ivCtr ;
107
108 wire [6:0] ivIndex ;
109 assign ivIndex = ivCtr ;
110
111 wire done_mixing ;
112 assign done_mixing = (ctr == 9’d511) ? 1’b1 : 1’b0;
113
114 // //////////////
115
116 wire kisBit ;
117 assign kisBit = keyPrefix_local [ keyPrefixIndex ] ^ iv_local [ ivIndex ];
118
119 // KIS bit computation different during first and second half of mixing
120 wire kisBitMixing ;
121 assign kisBitMixing = (ctr [8] == 1’b1) ? kisBit : iv_local [ ivIndex ];
122
123 // //////////////
124
125 always @( posedge clk)
126 begin
127 if ( reset )
128 begin
129 ‘ifndef KEY_EXTERNAL
130 keyPrefix_local_reg <= key [0:31];
131 ‘endif
132
133 ‘ifndef IV_EXTERNAL
134 iv_local_reg <= iv;
135 ‘endif
136
137 nfsr2_state [0] <= ~key [0];
138 nfsr2_state [1:94] <= key [1:94];
139 nfsr1_state [0:32] <= key [95:127];
140
141 ctr <= 9’d0;
142 ivCtr <= 7’d0;
143
144 cipherFSM <= S_PHASE2 ;
145 end
146 else if ( enable )
147 begin
148 nfsr1_state [0:31] <= nfsr1_state [1:32];
149
150 nfsr2_state [0:93] <= nfsr2_state [1:94];
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151
152 // if ivCtr == 96 --> set ivCtr := 0
153 if ( ivCtr [6] && ivCtr [5])
154 ivCtr [6:5] <= 2’d0;
155 else
156 ivCtr <= ivCtr + 1;
157
158 case ( cipherFSM )
159 S_PHASE2 :
160 begin
161 nfsr1_state [32] <= nfsr1_feedbackBit ^ keystreamBit ;
162 nfsr2_state [94] <= nfsr2_feedbackBit ^ nfsr1_state [0] ^

kisBitMixing ^ keystreamBit ;
163
164 if ( done_mixing )
165 begin
166 ctr <= 9’d0;
167 cipherFSM <= S_GENOUT ;
168 end
169 else
170 ctr <= ctr + 1;
171 end
172
173 S_GENOUT :
174 begin
175 nfsr1_state [32] <= nfsr1_feedbackBit ;
176 nfsr2_state [94] <= nfsr2_feedbackBit ^ nfsr1_state [0] ^

kisBit ;
177
178 ctr [6:0] <= ctr [6:0] + 1;
179 end
180 endcase
181 end
182 end
183
184 // //////////////
185
186 endmodule
187
188 // **************************************
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