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1. Background and Motivations



Linear diffusion layer

A linear diffusion layer can be represented by a matrix and
provides external dependency.

Let L be a linear diffusion layer which is a matrix of order n.
L’s performance iIs measured by the branch number:

® B(L)=min{w(X)+W(LX)| X € (F™", X = 0}

e B(L)<n+1

MDS Matrix

L is an MDS matrix of order n if and only if B(L)=n+1.



Lightweight MDS Matrix

Blaum, Roth, IEEE TIT 1999

L is MDS if and only if all square sub-matrices of L are of
full rank.



Lightweight MDS Matrix

An MDS matrix of order n can be represented by the following
matrix:

(L, L, - Ly

L L ... L
I

\Ln,l I—n,2 I—n,n/

where L;; are non-singular binary matrices of order m.

For convenience, L is called the structure-matrix (or structure),
and L;; Is called the entry-matrix (or entry).



XOR Count and Full Rank

XOR count
Lightweight means the implementation requires fewer XORs.
* XOR count of L;; Is described by #(L; ;)=w(L; ;)-m.

« XOR count of L is described by #(L), which is the sum of
all XOR counts of L ;.

Full rank
Let A, B and C be binary matrices of order 4.

(A B C
That | Cc A B |is of full rank means that its rank is 12.

(B C A,




Motivations

1. Efficiency
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Motivations
2. Entry

* Matrix representation of finite field F,

* The set of all non-singular binary matrices GL(m, F,)
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2. Efficiently Construct Lightweight MDS Matrices



Structure-matrices
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Method to select the structures: no sub-matrix (




Entry From Matrix Polynomial Residue Ring
Let T be a non-singular binary matrix.
f(x) 1s the minimal polynomial of T. It satisfies f(T)=0.
F,(T) Is Isomorphic to F,[x] /(f(x)).

F,(T) Is the matrix polynomial residue ring generated by T.

O | |
I 1 a) T 1 XOR
| T | b(T)

oc(T) d(T) I




Identify Full Rank

T I | ) (X 1 1 X 1 1
I I Tle—s |1 1 X|=—ll 1 x=x'+1
T2+ 1 x*+1 1) 1 x*+1 1
Sub-matrix Sub-matrix Sub-determinant
T*+1

—

I I T | isof full rank if and only if T+ non-singular.




Conditions of T

Let T be a binary matrix of order m. T satisfies the following
conditions:

1. #(M)=1
2. T is non-singular

3. T+l Is non-singular



Conditions of T

Why Is T+l non-singular?



Conditions of T

S, S, S, S, S,

If there are at least two T in one of the above structures, then
there must exist a sub-matrix as the following matrix:

)

| |
( j Is of full rank if and only if T +1 is non-singular.




Analyzing F,(T)
For instance, T’s order is 8. By searching T, we get:
1. The number of T Is 28224.
2. The minimal polynomial of T only has 7 choices.

3. Inany F,[T], there are at most 4 elements with no more
than 3 XORs.



Algorithm 1

Step 1: Select T satisfying #(T)=1, T and T+I are non-singular,

and find its minimal polynomial f(x). Then, find b,(x), b,(x),

by(x), b,(x) satisfying # b(T) < 3 XORs.

Step 2: Construct candidates over

10;(X), by(X), by(X), bs(X)}-

Step 3: If the matrix 1s MDS, then
output the right matrix and its XORs.




Comparisons with LB16
Entries are matrices of order 4.

Matrix type Sumof | Number | Running
- XORs | of results time

Special structure-matrix 1week LB16
S; 10 288 00:01:42 Ours

LB16: Intel Core 17-4790 16 G 3.6 GHz
Our platform: C-free Intel Core 15-5300U 4G 2.3GHz



Comparisons with LW16 (FSE2016)
Entries are matrices of order 8.

Matrix type Sumof | Number | Running
U XORs | of results time

Circulant(l, 1, A, B) 80640 3 days LW16
Circulant(l,1, A B) 12 80640 00:01:27 ours
Had(l,A A", B) 20 622 4 weeks LW16
Had(l, A B,C) 20 241920  00:07:00 ours

LW16 (FSE2016): Magma v2.20-3 Intel Core 15
Our platform: C-free Intel Core 15-5300U 4G 2.30GHz



Results

Sum of Number of Runnlng

Circ(l,1, A, B) F [Tl 00:00:01
Hada(l, A, B,C) FIT,..] 20 288 00:00:04
Optimal (special) F[T,.] 13 48 00:00:01
S, FIT,..] 10 288 00:01:42

S, F,[T,.] 10 48 00:05:05
Circ(l,1,A,B) F,[Ts.e] 12 80640  00:01:27
Hada(l, A, B,C) F,[Ts.e] 20 241920  00:07:00
Optimal (special) F[Toel 10 40320 00:01:16
S, F Tl 10 1128960 14:00:00
Circ(l,1, A, B) F[Tiee ] 12 1 00:00:30
Optimal (special) Fo[Ti6e) 10 1 00:00:30

Our platform: C-free Intel Core 15-5300U 4G 2.30GHz
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3. Efficiently Construct Involutory Hadamad MDS
Matrices



Involutory matrix

L is an involutory matrix if and only if L=l




Involutory Hadamard MDS matrix

Hada(l, A, B, C) denotes the following Hadamard matrix.
A B C

I

A 1 C B
B C I A
C B A I

Theorem 1: T € GL(m,F,), f(x) is the minimal polynomial of T.
a(x), b(x), c(x) €F,[x]/(f(x)). Then Hada(1, a(x), b(x), c(x)) Is
Involutory if and only if

a(x)’= (b(x) +c(x) )* mod f(x)

Special case: Hada(1, x, b(x), c(x)) is involutory if and only if
X?=(b(x) +c(x) )* mod f(x)



Involutory Hadamard MDS matrix

Special case: Hada(1, x, b(x),/c(x))|is involutory if and only if
X?=(b(x) +c(x) )> mod f(x) <«

For instance, g,(X) satisfies x?’=( gy(x))> mod f,(x). Let

C(X)=b(x)+ go(X).
It is equivalent to b(x) +c(x)=g,(x) over F,. Therefore,

x2=( b(x) +c(x) )2 mod f,(x)

Then Hada(1, x, b(x),|b(x)+ gQ(x)I) IS involutory.




Analyzing Polynomials of T

For any T of order 8 satisfying those three conditions, its
minimal polynomial only has 7 choices. They are:
f,(X)=x8+x+1, f,(X)=x8+x%+1, fa(X)=x8+x3+1
f,00)=x8+x4+1,  f.(X)=x8+x>+1,  f(X)=x8+x5+1,
fo(X)=x8+x"+1

For each f,(x), we compute all g(x) satisfying the following
equation

x*=(9(x) )* mod fy(x) (1)



Algorithm 2

With f,(x)=x8+x+1, the equation (1) has 16 solutions. They are
9:(X), 95(X),..., 916(X).

Algorithm 2:

Step 1: Search b(x) over F,[x]/(f,(x))

Step 2: k from 1 to 16, construct involutory Hadamard matrix
Hada( 1, x, b(x), b(x)+g,(x) )

Step 3: If the matrix is MDS, then output the result
Hada( 1, T, b(T), b(T)+g,(T) )

and i1ts XORs.




Comparisons with LW16 (FSE2016)
Entries are matrices of order 8.

. Sum of | Number | Running
Involutory Hada(l, A, A*,A+A™) 40 80640 1 day LW16
Involutory Hada(l, A, B,C) 20 40320 1’04~ Ours

LW16 (FSE2016) platform: Magma v2.20-3 Intel Core 15
Our platform: C-free Intel Core 15-5300U 4G 2.30GHz



Comparisons---Lightweight Involutory Hadamard MDS

Matrix
_

Hada(l, A A A+ A™) GL(4,F,) LW16

Hada(0x1, 0x4,0x9,0xd) F,./0x13 24 IJNP14, SKOP15

Hada(0x,0x2,0x6,0x4) F,. /0x19 24 ABBLM14

Hada(l, A, B,C) FIT,..] 24 ours

Hada —cauchy(0x01,0x02,0xfc,0xfe) F, /0x11b 206 CG14

Hada(0x01,0x02,0x04, 0x06) F, /0x11d 88 BROO

Hada(0x01,0x02,0xb0, 0xb2) F. /0x165 64 SKOP15

Subfield — Hada(0x1,0x4,0x9,0xd) F./0x13 48 SKOP15

Hada(l,A A™ A+ A™) GL(8,F,) 40 LW16

Hada(l, A,B,C) F [Ty ] 20 Ours



Thank you for your attention!



