Iterative Block Ciphers from Tweakable Block Ciphers with Long Tweaks

Ryota Nakamichi and Tetsu Iwata

Nagoya University, Japan

FSE 2020 November 9–13, 2020, Virtual

Block Ciphers

- block cipher (BC)
	- $E : \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$
	- *n* is the block length, *n*-BC
	- for each *K* ∈ K, *EK*(·) ∈ Perm(*n*)
- Construction of a secure and efficient block cipher is one of the most important problems in symmetric key cryptography

Provably Secure BCs

- strong pseudorandom permutation (SPRP) [LR88]
	- real world: (*EK, E*[−]¹ *^K*)*, E^K* ∈ Perm(*n*), *n*-BC
	- $-$ ideal world: $(\Pi,\Pi^{-1}),\Pi\in {\rm Perm}(n)$, a random permutation
	- $\text{ Adv}_{E}^{\text{sprp}}(\mathcal{A}) = \Pr[\mathcal{A}^{E_K,E_K^{-1}} \Rightarrow 1] \Pr[\mathcal{A}^{\Pi,\Pi^{-1}} \Rightarrow 1]$
- 4-round Feistel cipher with *n*-bit PRFs is an SPRP [LR88]
	- $-$ For any ${\mathcal{A}}$ that makes q queries, $\mathbf{Adv}_{E}^{\rm sppp}({\mathcal{A}})$ is $O(q^2/2^n)$
	- $-$ a birthday bound with respect to the input/output length of the underlying primitive

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM J. Comput., 1988

Beyond-Birthday-Bound Secure BCs

- \bullet LR result is $O(q^2/2^n)$, requires $q \ll 2^{n/2}$
- BBB (beyond-birthday-bound) secure constructions?
	- $-$ BCs that remain secure even if $q \geq 2^{n/2}$
	- 5-round or 6-round Feistel cipher [Pat04]
	- many-round Feistel cipher [MP03]
- The use of a tweakable block cipher (TBC) as a building block [Min09]

[[]Pat04] Jacques Patarin. Security of Random Feistel Schemes with 5 or More Rounds. CRYPTO 2004

[[]MP03] Ueli M. Maurer and Krzysztof Pietrzak. The Security of Many-Round Luby- Rackoff Pseudo-Random Permutations. EUROCRYPT 2003

[[]Min09] Kazuhiko Minematsu. Beyond-Birthday-Bound Security Based on Tweakable Block Cipher. FSE 2009

Tweakable Block Ciphers (TBCs)

- Generalization of BCs, and they take an additional input called a tweak [LRW02]
	- $E : \mathcal{K} \times \mathcal{T} \times \{0,1\}^n \to \{0,1\}^n$
 \mathcal{T} is the twole space, if $\mathcal{T} = \{0,1\}^n$
	- ${\cal T}$ is the tweak space, if ${\cal T}=\{0,1\}^t$, then t is the tweak length, (n,t) -TBC
	- for each *K* ∈ K and *T* ∈ T , *EK*(·*, T*) ∈ Perm(*n*)
- TBCs are useful
	- encryption scheme schemes, MACs, authenticated encryption schemes
- There are many constructions of a TBC based on BCs
	- LRW1, LRW2 [LRW02], XEX [Rog04]
- constructions of BCs from TBCs
- There are a number of recent proposals as a primitive
	- TWEAKEY framework [JNP14]
	- CAESAR submissions (KIASU-BC, Deoxys-BC, Joltik-BC, Scream), SKINNY [BJK+16], QARMA [Ava17], CRAFT [BLMR19]

[[]LRW02] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ciphers. CRYPTO 2002

[[]Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. ASIACRYPT 2004

- 2*n*-BC from (*n, n*)-TBCs and universal hash functions [Min09]
- 2*n*-BC from (n, n) -TBCs only [CDMS10]
- *dn*-BC from $(n, \tau n)$ -TBCs with $d = \tau + 1$ and $\tau \ge 1$ [Min15]
- We focus on iterative constructions of BCs
	- a fixed input length keyed permutation
	- the block length is a multiple of *n*

[[]CDMS10] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin. A Domain Extender for the Ideal Cipher. TCC 2010 [Min15] Kazuhiko Minematsu. Building blockcipher from small-block tweakable blockcipher. Des. Codes Cryptography, 2015

BCs from TBCs [CDMS10]

- 2*n*-BC from (n, n) -TBCs [CDMS10] \widetilde{P}_i is \widetilde{E}_K .
- \bullet $O(q^2/2^n)$ security with 2 rounds (birthday bound)
- \bullet $O(q^2/2^{2n})$ security with 3 rounds (BBB)
- domain extender for the ideal cipher, indifferentiability setting, ideal cipher model
- tweakable block ciphers

BCs from TBCs [Min15]

- *dn*-BC from $(n, \tau n)$ -TBCs with $d = \tau + 1$ and $\tau > 1$ [Min15]
	- a TBC with "long tweaks"
	- $\tau = 2$ and $d = 3$ in the figure
- The middle part has *d* rounds
- \bullet G_1 and G_2 are keyed permutations that satisfy certain combinatorial requirements
	- can be non-cryptographic permutations
		- pairwise independent permutations
	- can also be cryptographic permutations
		- *d* rounds, 3*d* rounds in total
- \bullet $O(q^2/2^{dn})$ security with good G_1 and G_2

• $d = \tau + 1$, and the security bounds neglect constants

- In Theorem 2, $\ell = 1, \ldots, d 1$
- Theorem 1: The security remains the same even if we reduce the number of rounds by two
- Theorem 2: If $q \leq 2^n$, BBB security is achieved as low as $d+1$ rounds $(\ell = 1)$, and the security exponentially improves by adding rounds, up to $2d - 1$ rounds
- Theorem 3: birthday bound with *d* rounds, and there is a matching attack

• $d = \tau + 1$, and the security bounds neglect constants

• In Theorem 2, $\ell = 1, \ldots, d - 1$

- Theorem 1: The security remains the same even if we reduce the number of rounds by two
- Theorem 2: If $q \leq 2^n$, BBB security is achieved as low as $d+1$ rounds $(\ell = 1)$, and the security exponentially improves by adding rounds, up to $2d - 1$ rounds
- Theorem 3: birthday bound with *d* rounds, and there is a matching attack

- $d = \tau + 1$, and the security bounds neglect constants
- In Theorem 2, $\ell = 1, ..., d 1$
- Theorem 1: The security remains the same even if we reduce the number of rounds by two
- Theorem 2: If $q \leq 2^n$, BBB security is achieved as low as $d+1$ rounds $(\ell = 1)$, and the security exponentially improves by adding rounds, up to $2d - 1$ rounds
- Theorem 3: birthday bound with *d* rounds, and there is a matching attack

- $d = \tau + 1$, and the security bounds neglect constants
- In Theorem 2, $\ell = 1, ..., d 1$
- Theorem 1: The security remains the same even if we reduce the number of rounds by two
- Theorem 2: If $q \leq 2^n$, BBB security is achieved as low as $d+1$ rounds $(\ell = 1)$, and the security exponentially improves by adding rounds, up to $2d - 1$ rounds
- Theorem 3: birthday bound with *d* rounds, and there is a matching attack

Implication

- Assume that we use SKINNY with 128-bit blocks, 256-bit tweaks, and 128-bit keys (384-bit tweakey) with *r* rounds, and assume that it is perfectly secure
- 384-BC with 128*r*-bit keys

Coefficient-H Technique

- Patarin's coefficient-H technique [Pat08, CS14]
- partition all the transcripts such that $Pr[\Theta_{ideal} = \theta] > 0$ into good ones T_{good} and bad ones T_{bad}
- Suppose that there exist ϵ_1 and ϵ_2 that satisfy:

$$
- \forall \theta \in \mathsf{T}_{\text{good}}, \frac{\Pr[\Theta_{\text{real}} = \theta]}{\Pr[\Theta_{\text{ideal}} = \theta]} \ge 1 - \epsilon_1, \text{ and}
$$

$$
- \Pr[\Theta_{\text{ideal}} \in \mathsf{T}_{\text{bad}}] \le \epsilon_2
$$

$$
\mathsf{Then,} \mathbf{Adv}_{E}^{\text{SPP}}(\mathcal{A}) \le \epsilon_1 + \epsilon_2
$$

[[]Pat08] Jacques Patarin. The "Coefficients H" Technique. SAC 2008

[[]CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ciphers. EUROCRYPT 2014

 \bullet 7 rounds when $d=3,~S^1,\ldots,S^4$ are internal variables

 \bullet Real world: Following [CS14], we release S^1,\ldots,S^4 to ${\mathcal A}$ after making all the queries

• Ideal world: use Π and Π^{-1} , and also dummy P_1, P_2, P_6, P_7 to compute S^1, \ldots, S^4

• Ideal world: use Π and Π^{-1} , and also dummy P_1, P_2, P_6, P_7 to compute S^1, \ldots, S^4

- In the ideal world, a transcript is bad if
	- $\ (S_i^1, S_i^2, S_i^3)$ collides
	- (S_i^2, S_i^3, S_i^4) collides
- the bad event involves randomness of 3*n* bits

- In general, we have S^1, \ldots, S^{2d-2} as internal variables
- In the ideal world, a transcript is bad if

$$
- (S_i^1, \ldots, S_i^d) \text{ collides}
$$

-
$$
(S_i^2, \ldots, S_i^{d+1})
$$
 collides
-
$$
\cdots
$$

-
$$
(S_i^{d-1}, \ldots, S_i^{2d-2})
$$
 collides

• *d* − 1 cases, and the bad event involves randomness of *dn* bits

\n- $$
\Pr[\Theta_{\text{ideal}} \in \mathsf{T}_{\text{bad}}] \leq \frac{0.5(d-1)q^2}{2^{dn}}
$$
\n- $\forall \theta \in \mathsf{T}_{\text{good}}, \frac{\Pr[\Theta_{\text{real}} = \theta]}{\Pr[\Theta_{\text{ideal}} = \theta]} \geq 1 - \frac{0.5q^2}{2^{dn}}$
\n- $\text{Adv}_{E}^{\text{sprp}}(\mathcal{A}) \leq \frac{0.5dq^2}{2^{dn}}$ from the coefficient-H technique
\n

Theorem 2, $(d + \ell)$ -Round Construction

- 4 rounds when $d = 3$ and $\ell = 1$
- $\bullet \,\, S^1$ is the only internal variable
- In the ideal world, S^1 is generated with dummy P_1 if the *i*-th query is an encryption query, and with dummy P_4 if the *i*-th query is a decryption query
- In the ideal world, a transcript is bad if
	- $\, \, (M_i^2, M_i^3, S_i^1)$ collides (impossible for an encryption query)
	- (M_i^3, S_i^1, C_i^1) collides
	- $\,\, (S^1_i, C^1_i, C^2_i)$ collides (impossible for a decryption query)
- The bad event involves randomness of 2*n* bits

Theorem 2, $(d + \ell)$ -Round Construction

• In general, the bad event involves randomness of $(\ell + 1)n$ bits • Pr $[\Theta_{\text{ideal}} \in \mathsf{T}_{\text{bad}}] \leq \frac{(d-1)q^2}{2^{(\ell+1)n}}$ $2^{(\ell+1)n}$ $-$ rely on $q \leq 2^n$ to derive the upper bound • $\forall \theta \in \mathsf{T}_{\text{good}}, \frac{\Pr[\Theta_{\text{real}} = \theta]}{\Pr[\Theta_{\text{real}} = \theta]}$ $\frac{\Pr[\Theta_{\text{real}} = \theta]}{\Pr[\Theta_{\text{ideal}} = \theta]} \ge 1 - \frac{0.5q^2}{2^{dn}}$ 2 *dn* $\bullet \;\; \mathbf{Adv}_{E}^{\text{sprp}}(\mathcal{A}) \leq \frac{dq^2}{2^{(\ell+1)}}$ $\frac{a}{2^{(\ell+1)n}}$ from the coefficient-H technique

Theorem 3, *d*-Round Construction

- 3 rounds when $d = 3$
- birthday bound security, no internal variable
- matching attack
	- make encryption queries
		- with distinct *M*¹
		- with fixed M^2 and M^3
	- $\,C^{1}$ is always distinct in the real world, but can collide in the ideal world

Conclusions

- Open questions
	- $-$ We do not know if the condition of $q\leq 2^n$ can be removed from Theorem 2
	- The tightness of Theorems 1 and 2 is open
	- Generalization to enciphering schemes
	- The analysis in the indifferentiability framework (please check [NI20b])

Thank you!

[[]NI20b] Ryota Nakamichi and Tetsu Iwata. Beyond-Birthday-Bound Secure Cryptographic Permutations from Ideal Ciphers with Long Keys. FSE 2020

Conclusions

- Open questions
	- $-$ We do not know if the condition of $q\leq 2^n$ can be removed from Theorem 2
	- The tightness of Theorems 1 and 2 is open
	- Generalization to enciphering schemes
	- The analysis in the indifferentiability framework (please check [NI20b])

Thank you!

[[]NI20b] Ryota Nakamichi and Tetsu Iwata. Beyond-Birthday-Bound Secure Cryptographic Permutations from Ideal Ciphers with Long Keys. FSE 2020