
Optimal PRFs from Blockcipher Designs

Bart Mennink 1 Samuel Neves 2

FSE 2018
1Radboud University

2University of Coimbra



Lightweight Cipher Block Sizes

32 48 64 80 96 128 256

0

10

20

30

Block Size

Co
un

t

1/20



Birthday Attacks

• “On the Practical (In-)Security of 64-bit Block Ciphers –
Collision Attacks on HTTP over TLS and OpenVPN”

• “Impossible plaintext cryptanalysis and probable-plaintext
collision attacks of 64-bit block cipher modes”

• “The Missing Difference Problem, and its Applications to
Counter Mode Encryption”

• “Optimal Forgeries Against Polynomial-Based MACs and
GCM” 2/20



Invertibility as a Liability

• AES-GCM, AES-CCM, …
• Needs a PRF, not a PRP
• PRP in fact the greatest contributor to security degradation

• Why don’t we design PRFs instead?
• We actually do, but they’re usually {truncated, xored, …} from

idealized permutations
• Permutations are what we know how to build
• Losing information, but not too much, is tricky
• Non-invertible round functions lose too much

• Can we design PRFs without performance or security hit?

3/20



Invertibility as a Liability

• AES-GCM, AES-CCM, …
• Needs a PRF, not a PRP
• PRP in fact the greatest contributor to security degradation

• Why don’t we design PRFs instead?
• We actually do, but they’re usually {truncated, xored, …} from

idealized permutations
• Permutations are what we know how to build
• Losing information, but not too much, is tricky
• Non-invertible round functions lose too much

• Can we design PRFs without performance or security hit?

3/20



GEDMD



Generalized EDMD

x p1 p2 y

• AdvPRF
EDMDp1,p2 (D) ≤ q/2n (CRYPTO 2017)

• Simple reduction to xor of permutations, extensively studied

• No reason to limit ourselves to 2 permutations
• Generalization also reduces to EDMD or xor of d permutations

4/20



Generalized EDMD

x p1 p2 p3 y

• AdvPRF
EDMDp1,p2 (D) ≤ q/2n (CRYPTO 2017)

• Simple reduction to xor of permutations, extensively studied
• No reason to limit ourselves to 2 permutations

• Generalization also reduces to EDMD or xor of d permutations

4/20



Generalized EDMD

x p1 p2 p3 pd y

• AdvPRF
EDMDp1,p2 (D) ≤ q/2n (CRYPTO 2017)

• Simple reduction to xor of permutations, extensively studied
• No reason to limit ourselves to 2 permutations
• Generalization also reduces to EDMD or xor of d permutations

4/20



FastPRF



Design Principle

x E1
k E2

k E3
k Ed

k y

• Treat block cipher Ek as composition of permutations

• Apply GEDMD using imperfect permutations E1
k , E2

k , . . .

• “Prove-then-prune”
• Why GEDMD?

5/20



Design Principle

x E1
k E2

k E3
k Ed

k y

• Treat block cipher Ek as composition of permutations
• Apply GEDMD using imperfect permutations E1

k , E2
k , . . .

• “Prove-then-prune”

• Why GEDMD?

5/20



Design Principle

x E1
k E2

k E3
k Ed

k y

• Treat block cipher Ek as composition of permutations
• Apply GEDMD using imperfect permutations E1

k , E2
k , . . .

• “Prove-then-prune”
• Why GEDMD?

5/20



Truncated Permutations

x
E1

k

E2
k

‖

/

/

n
2

n
2

y

• At best 23n/4 security
• Attacker gets direct access to weaker E1

k and E2
k

• Risky

6/20



Sum of Permutations

x
E1

k

E2
k

y

• Interesting properties may get through E1
k ⊕ E2

k

• E.g., linear/differential/integral characteristics
• Still risky

7/20



EDM (Cogliati-Seurin)

x E1
k E2

k y

• Attacker has some control over input of E2
k

• Differential collisions if E1
k has high-probability differential

• Does not generalize easily to more permutations

8/20



(G)EDMD (Mennink-Neves)

x E1
k E2

k y

• No direct control over intermediate states
• Output always masked by full application of Ek

• Appears to be the least risky option!

9/20



AES-PRF



AES

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 E(x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

AES-PRF-128 is AES-128, with a feed-forward after the 5th round
AES-PRF-192 is AES-192, with a feed-forward after the 6th round
AES-PRF-256 is AES-256, with a feed-forward after the 7th round

Not the only reasonable choices!

10/20



AES-PRF

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

AES-PRF-128 is AES-128, with a feed-forward after the 5th round

AES-PRF-192 is AES-192, with a feed-forward after the 6th round
AES-PRF-256 is AES-256, with a feed-forward after the 7th round

Not the only reasonable choices!

10/20



AES-PRF

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

AES-PRF-128 is AES-128, with a feed-forward after the 5th round
AES-PRF-192 is AES-192, with a feed-forward after the 6th round
AES-PRF-256 is AES-256, with a feed-forward after the 7th round

Not the only reasonable choices!

10/20



AES-PRF

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

AES-PRF-128 is AES-128, with a feed-forward after the 5th round
AES-PRF-192 is AES-192, with a feed-forward after the 6th round
AES-PRF-256 is AES-256, with a feed-forward after the 7th round

Not the only reasonable choices!

10/20



AES-PRF Security

• {5, 6, 7}-round AES, i.e., E1
k (·), is weakest component

• But is masked by full AES
• Existing {4, 5}-round distinguishers do not work in this setting
• Differential and linear distinguishers are ineffective

• Try to break unbalanced AES-PRF variants instead
• E.g., AES10(x) ⊕ x , AES10(x) ⊕ AES1(x), …

11/20



AES10(x) ⊕ x

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

• This is simply Davies-Meyer
• AES10 = F (x) ⊕ x
• Distinguish in ≈ 264 by standard method

12/20



AES10(x) ⊕ AES1(x)

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

• Cancel out contribution of AES1(x), 32 bits at a time
• Candidate keys with no collisions happen are likely correct
• Key recovery in ≈ 267 queries and memory, 2101 time

13/20



AES10(x) ⊕ AES9(x)

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

• No final MixColumns
• Output is of the form S(x) ⊕ x
• Highly biased

14/20



AES10(x) ⊕ AES2(x)

x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

• Canceling out AES2(x) too expensive
• New strategy required
• Seems likely to be breakable as well

15/20



Applications of AES-PRF



AES-GCM Before AES-PRF

n �1 n + 1 �1 n + 2

Ek Ek Ek

m0

c0

m1

c1

⊗H⊗Had ⊗H ⊗H t

len(ad)‖len(c)

Ek

0

H

Advconf
GCM[AES,τ ](D) ≤ Advprp

AES(D′) +
(

q + σ + 1
2

)
/2n

Advauth
GCM[AES,τ ](D) ≤ Advprp

AES(D′) + q′(` + 1)
2τ

+
(

q + q′ + σ + 1
2

)
/2n

16/20



AES-GCM After AES-PRF

n �1 n + 1 �1 n + 2

Fk Fk Fk

m0

c0

m1

c1

⊗H⊗Had ⊗H ⊗H t

len(ad)‖len(c)

Fk

0

H

Advconf
GCM[AES-PRF,τ ](D) ≤ Advprf

AES-PRF(D′)

Advauth
GCM[AES-PRF,τ ](D) ≤ Advprf

AES-PRF(D′) + q′(` + 1)
2τ

16/20



AES-GCM-SIV Before AES-PRF

ad ⊗k1 ⊗k1

m0

⊗k1

m1

⊗k1

len(ad)‖len(m)

Ek2

n

fix0 t

t

Ek2

fix1

c0

�1

Ek2

fix1

c1

Ek Ek Ek Ek

xy xy xy xy

‖ ‖

�1 �2 �3

k1 k2

• Improved, natural, key derivation
• 2–3 fewer PRF calls
• Like GCM, birthday terms disappear

17/20



AES-GCM-SIV After AES-PRF

ad ⊗k1 ⊗k1

m0

⊗k1

m1

⊗k1

len(ad)‖len(m)

Fk2

n

fix0 t

t

Fk2

fix1

c0

�1

Fk2

fix1

c1

Fk Fk

�1

k1 k2

• Improved, natural, key derivation
• 2–3 fewer PRF calls
• Like GCM, birthday terms disappear

17/20



Tweakable FastPRF



Tweakable FastPRF

• FastPRF principle also applicable to tweakable blockciphers
• Draw from successful designs

• SKINNY, MANTIS, QARMA, …
• E.g., SKINNY-128-256 with feed-forward after 24 rounds

• Result: compressing {0, 1}256 → {0, 1}128 PRF
• Simple, length-independent authenticators
• E.g., Protected counter sums
• Or PMAC1 bounded by Advprf

˜FastPRF
(D′) +

(q
2

)
/2n

instead of by Advtprp
Ẽ

(D′) +
(q

2

)
/2n +

(
σ
2

)
/2n

18/20



Future Work



Variants

• Single-permutation (G)EDMD
• p(p(x)) ⊕ p(x)
• Conjectured to be optimally secure
• FastPRF analogous would cut key schedule cost in (at least) half
• How secure is it?

• Public-permutation (G)EDMD
• For usage in, e.g., sponge designs
• “Free” forward security
• How secure is it?

19/20



Suggestions

• Designers
• Consider including a PRF along with your new lightweight cipher
• Might be useful to distinguish between PRP and PRF calls
• E.g., different constants

• Cryptanalysts
• Look at AES-PRF!
• …or its reduced/unbalanced versions

• Theorists
• Minimal assumptions for GEDMD / FastPRF to be secure?
• Efficient tweakable-PRF constructions from non-tweakable PRP

designs?

20/20



Suggestions

• Designers
• Consider including a PRF along with your new lightweight cipher
• Might be useful to distinguish between PRP and PRF calls
• E.g., different constants

• Cryptanalysts
• Look at AES-PRF!
• …or its reduced/unbalanced versions

• Theorists
• Minimal assumptions for GEDMD / FastPRF to be secure?
• Efficient tweakable-PRF constructions from non-tweakable PRP

designs?

20/20



Suggestions

• Designers
• Consider including a PRF along with your new lightweight cipher
• Might be useful to distinguish between PRP and PRF calls
• E.g., different constants

• Cryptanalysts
• Look at AES-PRF!
• …or its reduced/unbalanced versions

• Theorists
• Minimal assumptions for GEDMD / FastPRF to be secure?
• Efficient tweakable-PRF constructions from non-tweakable PRP

designs?

20/20



Thank you!

20/20


	GEDMD
	FastPRF
	AES-PRF
	Applications of AES-PRF
	Tweakable FastPRF
	Future Work

