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Background

Many block ciphers use S-boxes to serve as the confusion
components. The S-boxes are usually needed to satisfy the following
conditions:

m Defined over the finite field F,» (for the easiness of
implementation);

m Permutation (to obtain the correctness of decryption);
m Low differential uniformity (to resist differential attacks);
m High nonlinearity (to resist linear attacks);

m Not too low algebraic degree (to resist higher order differential
attacks or algebraic attacks).
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Background

A well-known example:

AES uses the inverse function, namely, x~' over F,s as its S-box for
that it has very good cryptographic properties:

m its differential uniformity is 4;
m its nonlinearity is optimal (i.e., 112);
m its algebraic degree is optimal as well (i.e., 7).
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Let n and m be two positive integers, The functions from F} to ;' are
called (n, m)-functions or vectorial Boolean functions. Specially, when
m = 1, we call these (n, 1)-functions Boolean functions.
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Definition (Vectorial Boolean Functions)

Let n and m be two positive integers, The functions from F} to ;' are
called (n, m)-functions or vectorial Boolean functions. Specially, when
m = 1, we call these (n, 1)-functions Boolean functions.

m An (n,m)-function has the following coordinate form:

F(xlax27' o 7xl’l)
:(fl ()C],)Cz, e 7xn)7f2(xl;x27 e 7xn)a e 7fm(xlax27 e ;xn))a
where each coordinate f;(x;,x2, - - ,x,), 1 <i < mis a Boolean

function.
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Algebraic Normal Form (ANF)

An (n,m)-function F can be uniquely represented as an element of
Py 1, 20, -« %a] /63 + 21,05 + 22, -+, X0 + X))

F) = Y a (Hx,) = > ay,

IEP(N) i€l IEP(N)

where P(N) denotes the power set of N = {1,2,--- ,n}, and a; € F7.
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(Vectorial) Boolean Functions

Algebraic Normal Form (ANF)

An (n,m)-function F can be uniquely represented as an element of

Py 1, 20, -« %a] /63 + 21,05 + 22, -+, X0 + X))
F(x) = Z ay <Hxi> = Z ax’,
IEP(N) i€l IEP(N)
where P(N) denotes the power set of N = {1,2,--- ,n}, and a; € F7.

The algebraic degree of the function is by definition the global degree
of its ANF:

deg(F) = max{|l| : a; # (0,0,--- ,0);1 € P(N)}
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(Vectorial) Boolean Functions

A second representation of (n, m)-functions when m = n

Any (n,n)-function F admits a unique univariate polynomial
representation over Fy. [x]/(x*" + x), of degree at most 2" — 1:

21
F(x) = Z cix', ¢ € Fpn.
i=0
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(Vectorial) Boolean Functions

A second representation of (n, m)-functions when m = n

Any (n,n)-function F admits a unique univariate polynomial
representation over Fy. [x]/(x*" + x), of degree at most 2" — 1:

2"—1

= E c,-x’, ¢; € Fon.
i=0

m The algebraic degree of F is equal to the maximum 2-weight
wy(i) of i such that ¢; # 0, where w,(I) is the number of nonzero
coefficients /; € I, in the binary expansion [ = ZJ'.‘;OI 2.
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Definition (Differential Uniformity)

For a function F : Fo» — Fy., the differential uniformity of F(x) is

denoted as
Ap = max{dp(a,b) : a €Fy.,b € Fu},

where 6r(a,b) = |{x € Fp. : F(x +a) + F(x) = b}|.
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Differential Uniformity

Definition (Differential Uniformity)

For a function F : Fo» — Fy., the differential uniformity of F(x) is

denoted as
Ap = max{dp(a,b) : a €Fy.,b € Fu},

where 6r(a,b) = |{x € Fp. : F(x +a) + F(x) = b}|.
m The differential spectrum of F(x) is the multiset

{* 0p(a,b) : a € F,,b € Fon *}.
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Differential Uniformity

Obviously, if xy is a solution of F(x 4+ a) + F(x) = b, S0 is xo + a. Thus
the differential uniformity must be even. The smallest possible value
is 2. These functions which achieve this bound are called almost
perfect nonlinear (APN) functions.

m Gold function x2 1, 1 < i < 2L, ged(i,n) = 1 (Gold 1968);

m Kasami function x> ~2+1, 1 <i < 51, gcd(i,n) = 1 (Kasami
1971);

m Welch function x2+3, n = 27 + 1 (Niho 1972);
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Differential Uniformity

Since APN functions have the lowest differential uniformity, they are
the most ideal choices for S-box.

However, all the known APN functions are not permutations when the
extension degree is even except for one sporadic example over Fys
found by Dillon. (the BIG APN problem)

A natural tradeoff method is to use differentially 4-uniform
permutations as S-boxes. It is interesting to construct more
differentially 4-uniform permutations with high nonlinearity and
algebraic degree.
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Walsh transform

For any function F : F,.» — F,., we define the Walsh transform of F as

WF((l,b) - Z (71)Tr(bF(x)+ax)’ aab € FZ”&

xE€Fon

where Tr(x) = x+ x>+ --- + 12 is the absolute trace function from
Fy: to IFs.
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Nonlinearity

Walsh transform

For any function F : F,.» — F,., we define the Walsh transform of F as

WF(a7b) = Z (71)Tr(bF(x)+ax)’ aab € FZ”&

xE€Fon

where Tr(x) = x+ x>+ --- + 12 is the absolute trace function from
Fy: to IFs.

The multiset Ap = {* Wr(a,b) : a € Fp, b € F3, «} is called the Walsh
spectrum of the function F.
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The nonlinearity of F is defined as

1
F)y=2"1_~ :
NL(F) 2 ety bers, We(a, b)

m If n is odd the nonlinearity of F satisfies the inequality

NL(F) <21 - 27", and in case of equality F is called almost
bent function.
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Nonlinearity

Definition (Nonlinearity)

The nonlinearity of F is defined as

1
NL(F) =21~ 7 [Wrk(a,b)|.

m If n is odd the nonlinearity of F satisfies the inequality
NL(F) <21 - 27", and in case of equality F is called almost
bent function.

m While n is even, the known maximum nonlinearity is 2"~ — 23, It
is conjectured that V'L(F) is upper bounded by 2"~! —25. These
functions which meet this bound are usually called optimal
(maximal) nonlinear functions.
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Structures are defined as follows:
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Definition (Butterfly Structures)

Let k be a positive integer and « € Fy, e be an integer such that the
mapping x — x¢ is a permutation over F,« and
R [e, a](x) = (x + az)¢ + z¢ be a keyed permutation. The Butterfly
Structures are defined as follows:
m the Open Butterfly Structure with branch size k, exponent ¢ and
coefficient « is the function denoted HY defined by:

HE (69) = (Re oo e 010, Ry e, al(®)

m the Closed Butterfly Structure with branch size k, exponent ¢ and
coefficient « is the function denoted V¢ defined by:

Ve y) = (Ree, a](v), Ryle, a](x)) -
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(a) Open butterfly HZ (bijective). (b) Closed butterfly V¢.
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m Open Butterfly Structure

HZ (x,y)
= ((era(eryg)% + 042)’)e + ((erye)‘L‘ JFO‘J’)

e

)T+ ay)
m Closed Butterfly Structure

Ve(x,y) = ((ax +y)° +x°, (x + ay) + )
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Definition (Generalised Butterflies)

Let R be a bivariate polynomials of F,« such that R, : x — R(x,y) is a
permutation of Fx for all y in F,«. The Generalised Butterfly Structures

are defined as follows:
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Definition (Generalised Butterflies)

Let R be a bivariate polynomials of F,« such that R, : x — R(x,y) is a
permutation of Fx for all y in F,«. The Generalised Butterfly Structures

are defined as follows:
m the Open Generalised Butterfly Structure with branch size k is
the function denoted Hg defined by:

He(6,3) = (Reo1 0 0, R ()

m the Closed Generalised Butterfly Structure with branch size k is
the function denoted V; defined by:

VR(x’y) = (R(xvy)vR(y’x)) .
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(a) Open Generalised Butterfly Hg. (b) Closed Generalised Buitterfly V.

Figure: The Generalised Butterfly Structures.
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affine function over Fy..
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Equivalence Relations°

m Two functions F, G : F,» — o are called extended affine
equivalent (EA-equivalent), if G(x) = A1 (F(Az(x))) + As(x), where
Aj(x), A2(x) are affine permutations over F»» and As(x) is an
affine function over Fy..

m They are called CCZ-equivalent (Carlet-Charpin-Zinoviev
equivalent) if there exists an affine permutation over Fy: x F
which maps Gr to G , where Gr = {(x, F(x)) : x € Fa } is the
graph of F, and G is the graph of G.

m HY (Hg) and V¢ (Vi) are CCZ-equivalent.
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Theorem (Perrin et al. CRYPTO’16)

Let V¢ and HS respectively be the closed and open 2k-bit butterflies

with exponent e = 3 x 2' for some t, coefficient o not in {0, 1} and k
odd. Then:

V¢ is quadratic, and half of the coordinates of HS have algebraic
degree k, the other half have algebraic degree k + 1;

The differential uniformity of both HS and V¢ are at most equal to
4.
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Theorem (Perrin et al. CRYPTO’16)

Let V¢ and HS respectively be the closed and open 2k-bit butterflies

with exponent e = 3 x 2' for some t, coefficient o not in {0, 1} and k
odd. Then:

V¢ is quadratic, and half of the coordinates of HS have algebraic
degree k, the other half have algebraic degree k + 1;

The differential uniformity of both HS and V¢ are at most equal to

4
A Conjecture

The nonlinearity of butterfly structures of H> and V¢ operating on 2k
bits are equal to 2%~ — 2 for every odd k, e = 3 x 2" and o # 0, 1.



Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies V,, g and
H..s which are based on functions R : (x,y) — (x + ay)? + By* with
a, B # 0 are as follows:



Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies V,, g and
H..s which are based on functions R : (x,y) — (x + ay)? + By* with
a, B # 0 are as follows:

the algebraic degree of V, g is always equal to 2;



und Motivation and Our Results

yptographic Preperttes of Ge

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies V,, g and
H..s which are based on functions R : (x,y) — (x + ay)? + By* with
a, B # 0 are as follows:

the algebraic degree of V, g is always equal to 2;

ifk=3,a#0,Tr(a) =0and B € {a® + a,a’ + 1/a} then the
butterflies are APN, have a nonlinearity equal to 2**=' — 2k and
the algebraic degree of H,, g is equal to k + 1;



und Motivation and Our Results

yptographic Preperttes of Ge

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies V,, g and
H..s which are based on functions R : (x,y) — (x + ay)? + By* with
a, B # 0 are as follows:
the algebraic degree of V, g is always equal to 2;
ifk=3,a#0,Tr(a) =0and B € {a® + a,a’ + 1/a} then the
butterflies are APN, have a nonlinearity equal to 2**=' — 2k and
the algebraic degree of H,, g is equal to k + 1;
if 3= (1 + «)* then the differential uniformity is equal to 2!, the
nonlinearity is equal to 22~1 — 2*" and the algebraic degree of
Ha g is equal to k;



Motivation and Our Results

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies V,, g and
H..s which are based on functions R : (x,y) — (x + ay)? + By* with
a, B # 0 are as follows:
the algebraic degree of V, g is always equal to 2;
ifk=3,a#0,Tr(a) =0and B € {a® + a,a’ + 1/a} then the
butterflies are APN, have a nonlinearity equal to 2**=' — 2k and
the algebraic degree of H,, g is equal to k + 1;
if 3= (1 + «)* then the differential uniformity is equal to 2!, the
nonlinearity is equal to 22~1 — 2*" and the algebraic degree of
Ha g is equal to k;
otherwise, the differential uniformity is equal to 4, the nonlinearity
is equal to 2**=! — 2% and algebraic degree of H,, s is either k or
k+ 1. Itis equal tok ifand only if 1 + a8 + o* = (8 + a + o).
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m The differential uniformity of both HS and V¢ are at most equal to
4, where e = (2' + 1) x 2/, coefficient a # 0, 1, k odd and
ged(i k) = 1;
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m The differential uniformity of both HS and V¢ are at most equal to
4, where e = (2' + 1) x 2/, coefficient a # 0, 1, k odd and
ged(i k) = 1;

m We prove that the nonlinearity equality are true for every odd %,
e=(2"+1) x 2" and « # 0, which gives independently a solution
to the conjecture by the way;
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Main Results

m The differential uniformity of both HS and V¢ are at most equal to
4, where e = (2' + 1) x 2/, coefficient a # 0, 1, k odd and
ged(i k) = 1;

m We prove that the nonlinearity equality are true for every odd %,
e=(2"+1) x 2" and « # 0, which gives independently a solution
to the conjecture by the way;

m We show that V! for e = (2/ + 1) x 2’ are permutations over
sz X sz.
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structures with exponent e = (2° + 1) x 2" and coefficient o. Then
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Theorem (Nontrivial Case)

Forany0<:i<k—1,0<i<k—1,ged(k,i) =1, a € Fy, and
a#0,1, letHY and V& be the open and closed 2k-bit butterfly
structures with exponent e = (2° + 1) x 2" and coefficient o. Then
V¢ has algebraic degree 2. The open butterfly HS has algebraic
degree k + 1;
The differential uniformity of both HS and V¢ are at most equal to
4;
The nonlinearity of both HY and V¢ are equal to 2%~ — 2k,

namely, optimal, and their extended Walsh spectrum are
{0, 2%, 2k+1},
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Theorem (Trivial Cases)

Forany0<t<k—1and0<i<k—1,gcd(i,k) =1, letH! and V! be
the open and closed 2k-bit butterfly structures with exponent
e = (24 1) x 2" and coefficient « = 1. then
Both H! and V! are permutations over Fy x Fy;
The algebraic degree of H! and V! are equal to k and 2
respectively;
The differential uniformity of both H! and V! are equal to 4 and
their differential spectrums are {0,4};

The nonlinearity of both H! and V! are equal to 2*~! — 2,
namely, optimal, and their Walsh spectrums are {0, £2+1}.
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Two Key Lemmas

m Suppose k and i are two integers such that ged(i, k) = 1. For any
c1, ¢z, c3 € Fy with not all zero, then the following equation

22i 2i .
cix” +ex” +ex=0

has at most 4 solutions in Fyx.
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Two Key Lemmas

m Suppose k and i are two integers such that ged(i, k) = 1. For any
c1, ¢z, c3 € Fy with not all zero, then the following equation

22i 2i .
cix” +ex” +ex=0

has at most 4 solutions in Fyx.
m Suppose k is an odd integer and ged(i, k) = 1. For any
c1, ¢z, c3 € Fy with not all zero, then the following equation

24

c1x” + cz)c2

2i—i—C3x:0

has at most 4 solutions in Fy.
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The Sketch of Proof
m The Proof of Differential Uniformity
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The Proof of Differential Uniformity

Letu,v,a,b € Fx and (u,v) # (0,0). Then we need to prove that
Ve (x,y) + Vo (x+u,y +v) = (a,b),

has at most 4 solutions in Fy x Fy,
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The Proof of Differential Uniformity

The Proof of Differential Uniformity

Letu,v,a,b € Fx and (u,v) # (0,0). Then we need to prove that
Ve (x,y) + Vo (x+u,y +v) = (a,b),

has at most 4 solutions in Fy x Fy, which is equivalent to the
following linear homogeneous system of equations
(af(au +v)+ u) g (a(au + v)2i + uzi) X

+(ou +v)y? + (au+v)?y =0,
(v + u)x® + (v + u)zix + (azi(av +u) + v) ¥

+ (a(av + u)zi + vzi) y=0

has at most 4 solutions in Fye x Fox.
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The Proof of Nonlinearity
Leta,b,c,d € Fx, and (c,d) # (0,0). Then we have

W2((a,b), (c,d)) = Z (_l)F(x,y). Z (_1)F(x+u,y+v)

X,yEF & u,vEF,

_ Z (71)F(x,y)+F(x+u,y+v)

X,Y,u,VEF

=% Z (_l)f(u,v)’

u,vER(c,d)
where
flx,y) =Tr ((azi“c +c+ d))cz’erl + (azin +c+ d)y2i+1

+(oz2[c + ad)xziy + (ac + ozzid)xyzi +ax + by) ,
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The Proof of Nonlinearity

and R(c, d) is the solution set of the following system of equations
with variables u, v
i 2i 2i i
(a2+lc+c+d> uw + (az“c—i—c—i—d) u
SN2 :
+ (ac + ozzld) T (ozzlc + ozd) v=20,

) 2 ) )
(azlc + ad) u” + (ac +o? d) u

v 2 ,
n <a2’+1d+ c—l—d) N (azl“d—s— c+ d) v=0.

The core part: dimg, R(c,d) = 0 or 2.
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For any u,v € Fx, where (u,v) # (0,0), it is sufficient to show that
Ve(x,y) + Vi(x+u,y +v) = (0,0),
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Trivial Case

For any u,v € Fx, where (u,v) # (0,0), it is sufficient to show that
Ve(x,y) + Vi(x+u,y +v) = (0,0),

has no solution in Fy x Fy.
This is to say that the following system of equations

o v x4 (v 4 )%y = (u+v)2 T 2
(u+ v)xzi + (u+ v)zix +uy? +uty= (u+ v)ziJrl + 2+l

has no solution in Fyx x Fa.
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Trivial Case

The proof procedure of the nonlinearity of trivial case is mainly based
on the following lemma.

Lemma
Let i be an integer such that 0 <i < k — 1 and ged(k, i) = 1. Then for
any (c,d) € F3, with (c,d) # (0,0), the following system of equations
in variables u and v

di® + (du)* ™ + (c+d)V? + ((c+dv)* =0,

(c+d)i® + ((c+du)?  +o® +(v)* =0

has exactly 4 solutions in Fy x Fax.
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Conclusion

m We further study the butterfly structures and show that they
always have very good cryptographic properties;

m We prove that their nonlinearities are optimal in a general case;

m We prove that the closed butterfly structure with trivial coefficient
is also a permutation.
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operating on Fx x Fy for even k is differential 4-uniform. (E.g., in
the case k = 6 there does exist o such that H¢' is differential
4-uniform)
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Open Problems

m The BIG APN problem: Is there a tuple k, R(x,y) where k > 3 is
an integer, such that Hg(x, y) operating on Fy x Fy is APN?

m Find more k, e, o Where e is an integer and « € Fy, such that HY
operating on Fx x Fy for even k is differential 4-uniform. (E.g., in
the case k = 6 there does exist o such that H¢' is differential
4-uniform)

m Find more classes of differentially 4-uniform permutations with
the optimal nonlinearity and high algebraic degree from other
functions over subfields or other structures.
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Thanks!
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