
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 4, pp. 191–248. DOI:10.46586/tosc.v2024.i4.191-248

Committing AE from Sponges
Security Analysis of the NIST LWC Finalists

Juliane Krämer1, Patrick Struck2 and Maximiliane Weishäupl1

1 Universität Regensburg, Regensburg, Germany
juliane.kraemer@ur.de maximiliane.weishaeupl@ur.de

2 Universität Konstanz, Konstanz, Germany
patrick.struck@uni-konstanz.de

Abstract. Committing security has gained considerable attention in the field of
authenticated encryption (AE). This can be traced back to a line of recent attacks,
which entail that AE schemes used in practice should not only provide confidentiality
and authenticity, but also committing security. Roughly speaking, a committing
AE scheme guarantees that ciphertexts will decrypt only for one key. Despite the
recent research effort in this area, the finalists of the NIST lightweight cryptography
standardization process have not been put under consideration yet. We close this
gap by providing an analysis of these schemes with respect to their committing
security. Despite the structural similarities the finalists exhibit, our results are of a
quite heterogeneous nature: We break four of the schemes with effectively no costs,
while for two schemes our attacks are costlier, yet still efficient. For the remaining
three schemes Isap, Ascon, and (a slightly modified version of) Schwaemm, we
give formal security proofs. Our analysis reveals that sponges are well-suited for
building committing AE schemes. Furthermore, we show several negative results
when applying the zero-padding method to the NIST finalists.
Keywords: Authenticated Encryption · Committing Security · NIST LWC Finalists

1 Introduction
The most fundamental cryptographic concept is symmetric encryption, allowing two parties,
Alice and Bob, which share some secret key, to securely exchange messages. The initial
goal—and still a cornerstone—is confidentiality which prevents anyone but Alice and
Bob from recovering the message from a ciphertext. In modern cryptography, security
requirements have been enhanced to also incorporate authenticity [Vau02], which ensures
that no third party can produce a ciphertext that Bob would accept as one generated
by Alice. On that account, authenticated encryption (AE), which encompasses both
confidentiality and authenticity was introduced and has, since then, become the gold
standard [NIST15,Ber14]. While authenticated encryption has undergone some changes—
from probabilistic over IV-based to nonce-based—nowadays, the research community agrees
on authenticated encryption with associated data as the right approach. Such a scheme
generates a ciphertext C by encrypting a message M under a context (K, N, A), consisting
of a key K, a nonce N , and associated data A. Authenticity should hold for both the
associated data and the message, while confidentiality is required only for the message.

The relevance of authenticated encryption is not only reflected by the conducted research,
but also by the fact that AE schemes are deployed ubiquitously, e.g., in TLS 1.3 [Res18]. The
CAESAR competition for authenticated encryption [Ber14] and the recent NIST lightweight
cryptography (LWC) standardization process [NIST15], both called specifically for AE
schemes which are deemed secure if they provide both confidentiality and authenticity.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Accepted: 2024-11-01 Published: 2024-12-18

https://doi.org/10.46586/tosc.v2024.i4.191-248
mailto:juliane.kraemer@ur.de
mailto:maximiliane.weishaeupl@ur.de
mailto:patrick.struck@uni-konstanz.de
http://creativecommons.org/licenses/by/4.0/

192 Committing AE from Sponges

However, a series of recent attacks [LGR21,DGRW18,ADG+22] has shown that there
still might be attack scenarios not covered by the standard notions. The Facebook message
franking attack [DGRW18] enabled Alice, a malicious user, to send an offensive or even
illegal content to Bob. If Bob tries to report this, it will fail as Facebook will see a
harmless content—prepared by Alice as part of the attack—instead. Further examples are
the subscribe with Google attack [ADG+22] and the partitioning oracle attack [LGR21].
The latter allows for more efficient key recovery: The adversary crafts a ciphertext that
decrypts validly under multiple keys (for instance a list of leaked keys) and sends it to the
recipient; if the recipient rejects the ciphertext, the adversary can rule out all keys which
are valid for the sent ciphertext.

In fact, these attacks can all be traced back to the same problem: The existence of
ciphertexts that decrypt validly under more than one key. This is neither prevented by
confidentiality nor by authenticity, bearing the need for an additional security notion. To
this end, committing security [BH22] was defined by requiring each ciphertext to be a
commitment to the key (CMTK) or even to the whole context (CMT). The latter notion
is the strongest one and is formalized by the following security game: The adversary
outputs two tuples (K, N, A, M), (K, N, A, M), each consisting of key, nonce, associated
data, and message, and wins if their contexts differ, i.e., (K, N, A) ̸= (K, N, A), and
Ae.Enc(K, N, A, M) = Ae.Enc(K, N, A, M) holds.

The aforementioned attacks demonstrate that the consequences of using non-committing
authenticated encryption can be severe. Considering that there are most likely more attacks,
which have yet to be discovered, it is important to deal with this problem. One possibility
would be to design protocols in such a way that usage of non-committing authenticated
encryption does not result in attacks. However, this approach is ill-advised as it requires
a separate analysis for each protocol and puts the burden on the protocol designers. A
better approach is to prove authenticated encryption schemes to be committing as those
can then be used in different protocols without worrying about committing attacks.

To this end, AE schemes used in practice need to be analyzed with respect to committing
security. This process has already begun and a number of commonly used AE schemes
(GCM, SIV, CCM, EAX, OCB3) have been examined [BH22,MLGR23]. A majority of
them were shown to not achieve committing security. Arguably among the most important
AE schemes are the finalists of the NIST LWC standardization process. While these schemes
have received significant analysis with respect to confidentiality and authenticity [TMC+23],
there is barely any research with respect to their committing security [NSS23,DGL23].

While not all of the existing committing attacks are immediately critical in the
lightweight setting, the partitioning oracle attack is applicable and can facilitate key
recovery on embedded devices, as is classically done via side-channel attacks (described
in [SW24]). This highlights the importance of committing security for lightweight AE
schemes—in particular if one takes into consideration that more committing attacks that
are relevant for such schemes might arise in the future.

1.1 Contribution
In this paper we analyze the committing security of the NIST LWC finalists that are
based on (tweakable) block-ciphers or permutations.1 More precisely, we focus on the
authenticated encryption mode of the schemes, while the underlying primitives, i.e.,
(tweakable) block-ciphers or permutations, are assumed to be ideal. We follow the example
of [MLGR23], to define a boundary between committing insecure and secure schemes. The
line is drawn at 64-bit security, i.e., a scheme providing at least 64-bit committing security
is called secure, while all others are called insecure.

We divide the NIST LWC finalists into two groups: Firstly, Elephant [BCDM21]
1This covers all finalists except Grain-128aead [HJM+21] which comes with a dedicated design.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 193

and Isap [DEM+21] follow the Encrypt-then-MAC (EtM) paradigm, as they start by
encrypting the message and then authenticate the resulting ciphertext alongside the con-
text. Secondly, Romulus [IKM+21], Gift-Cofb [BCI+21], Photon-Beetle [BCD+21],
Xoodyak [DHP+21], TinyJambu [WH21], Ascon [DEMS21], and Schwaemm [BBdS+21]
share a common structure, in the sense that they first process the context and then the
message. We refer to schemes of this type as Context-pre-Processing (CpP) schemes.

Surprisingly, even though the NIST finalists show strong structural similarities, our
results regarding their committing security are of a very heterogeneous nature. As can be
seen in Table 1, the results vary from attacks that require essentially no queries2 to attacks
that are costlier—still using significantly less than 264 queries—and proofs showing about
64-bit committing security. In summary, there are four schemes we break completely, two
schemes we break efficiently, and three schemes3 for which we show committing security.

Several of our attacks share the same idea. This is the case for Romulus and
Gift-Cofb, which are both block-cipher-based AE schemes and feature a state-update-
function, which is invoked in an alternating manner with the block-cipher. The attacks
boil down to the fact that for a fixed ciphertext, key, and nonce, one can find associated
data such that the ciphertext decrypts validly under this context. For this, starting from
the target ciphertext, the component that processes the message is inverted. Then the fact
that associated data blocks are XORed onto the whole state is used to connect the initial
state with the state obtained from the reverse computation. This attack strategy depends
heavily on the invertibility of the state-update-function. For Romulus, we show that
such an inversion is always possible, while for Gift-Cofb it works with a probability of 1

2 .
This implies that the attack cost for Gift-Cofb depends on the length of the ciphertext,
as we need to invert the state-update-function for each ciphertext block and the attack
only works if all are invertible. However, by choosing a short ciphertext we obtain a very
efficient attack. The XORing of an input onto the whole state is a vulnerability that is also
exploited in our attack on Elephant, a permutation-based AE scheme. In contrast to
Romulus and Gift-Cofb, Elephant is an Encrypt-then-MAC scheme. This structure
simplifies the committing attack as we only need to find two different contexts that verify
the ciphertext correctly—in this case the decryption of Elephant will never return ⊥.4
Due to this, it suffices to concentrate on the MAC and, more precisely, finding a tag
collision. The latter is easily achieved, as the associated data is XORed to the full state
during the tag generation of Elephant.

Except for these three schemes, none of the other NIST finalists carry out a full-state
XOR. Xoodyak arguably comes very close, as it is a full-state sponge, which reserves only
a few bits for padding, which are not directly accessible via the inputs. Therefore, we are
able to control most of the state by a direct XOR, while for the remaining bits a birthday
attack is applied. Similarly, the attack on TinyJambu, a block-cipher-based scheme, also
boils down to a birthday attack. We exploit that TinyJambu uses a tag of just 64 bits
(the shortest one among all considered schemes5), hence colliding tags can be found with
reasonable cost.

Our attack on Photon-Beetle, a sponge-based AE scheme, exploits the choice of
the initial state. For most of the finalists, this state contains some fixed initialization
vector, whereas for Photon-Beetle it consists exclusively of key and nonce. However,
this implies that the initial state can be controlled completely by a committing adversary,
which will turn out to be the key ingredient of our attack. Simply speaking, the attack
allows to choose an intermediate state (outcome of the context-pre-processing) that results
in the same ciphertext. We can invert this intermediate state for different associated data

2More precisely, these attacks need only the minimal cost of computing the respective encryption
algorithm twice (once for each of the output tuples).

3Note that we consider a slightly modified version of Schwaemm.
4Menda et al. [MLGR23] coin this property as NoFailDecrypt.
5Elephant uses 64-bit tags as well, but also gives a parameter set with 128-bit tags.

194 Committing AE from Sponges

and take the outcome as the key-nonce pair.
None of these attacks are applicable to any of the sponge-based schemes Isap, Ascon,

and Schwaemm. We give security proofs for these schemes, showing that they achieve
about 64-bit committing security. The high-level idea of all proofs is similar: we show
that the schemes can be viewed as plain sponge constructions and give bounds for finding
colliding tags, which directly translate to bounds on the committing security. Extra care
is necessary when dealing with the core features of the schemes—the re-keying mechanism
deployed in Isap and the state-/output-blinding applied in both Ascon and Schwaemm.

We can make the following observations for the committing security of a scheme. A too
short tag enables efficient birthday attacks that might extend to committing attacks, as—
depending on the scheme—colliding ciphertexts might be easy to find. Further, our analysis
reveals that the size of the state that cannot directly be influenced by the inputs (for
sponge-based schemes, this is the capacity) plays a crucial role regarding the committing
security of a scheme. If the size of this “input-independent” state is too small (even if that
happens only once in the scheme), a CMT adversary can produce a full-state collision with
only a few tries, which in almost all cases we considered, enables an efficient attack. In fact,
a variation of this concept is used in all of our attacks except for the one on TinyJambu,
which exploits its short tag length. This weakness can also be present in the initial state,
i.e., if it contains only a small fixed part, while the rest is filled with inputs provided
by the CMT adversary. Note that for the NIST finalists the aforementioned weakness is
only present in some of the sponge-based schemes. From this, we can derive some explicit
criteria. The schemes we prove committing secure fulfill all of these criteria, while the ones
proven insecure lack at least one of them. This suggests that these properties might be
sufficient to achieve CMT security—however, we want to emphasize that the criteria should
only be seen as a heuristic, as they are observations from the analysis of the schemes, not
proven statements. Taking into account our convention of 64-bit committing security, the
three criteria are: (I) the tag length is at least 128 bits, (II) at least 128 bits of the state
are unaffected by the inputs, and—solely for sponges—(III) the initial state contains at
least 64 bits that are independent of the inputs. While we observe that the absence of
these properties often enables committing attacks, this is not necessarily the case as the
example of Schwaemm shows: The unmodified version does not fulfill (III), as the initial
state is completely determined by key and nonce—however, the output-blinding deployed
in Schwaemm prevents a CMT attack.

Given the many negative results, we continue with the question whether the NIST
finalists can be patched easily to achieve committing security. A very simple method—
especially to preserve the lightweight aspect—is the zero-padding approach [ADG+22].
However, we show several scheme-specific negative results regarding the NIST finalists
when applying zero-padding. This implies that some of the finalists require the application
of costlier transforms to achieve committing security.

In conclusion, our analysis shows that most NIST LWC finalists do not achieve commit-
ting security (some even after being zero-padded) and those that do, are all sponge-based.

1.2 Related Work
Committing security can be traced back to [ABN10, FLPQ13] where the focus was on
public-key encryption. In [FOR17]—using the name key-robustness—Farshim et al. gave
first definitions of committing security for symmetric encryption. Recently, Bellare and
Hoang [BH22] introduced different variants of committing security for authenticated
encryption, covering the prior variants where a ciphertext is a commitment to the key, but
also stronger forms where a ciphertext is a commitment to all inputs. Ultimately, Menda
et al. [MLGR23] developed a framework for fine-grained committing security notions.
Instead of just having a ciphertext being a commitment to either the key or all inputs, it
allows for variants where it is a commitment to, say, the key and the nonce. Along with

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 195

Table 1: Overview of results: a ✗ indicates a committing (CMT) attack with essentially
no queries; a ✦ indicates a CMT attack with significantly less than 264 queries; and a ✓
indicates about 64-bit CMT security. Further, the table depicts three properties (I), (II),
and (III), that are relevant for the committing analysis: (I) the tag length is at least 128
bits, (II) at least 128 bits of the state are unaffected by the inputs, and (III) at least 64
bits of the initial state are independent of the inputs. Note that we consider property
(III) only for sponge-based schemes. The letters y and n indicate that the property is and
is not, respectively, present in the scheme. If the letter is red, we exploit the respective
property in our committing attack.

Properties
Scheme CMT (I) (II) (III) Sponge Section

Romulus ✗ y n - n Section 3.1
Elephant ✗ na n - n Appendix B.1

Gift-Cofb ✗ y n - n Appendix B.2
Photon-Beetle ✗ y y n y Appendix B.3

TinyJambu ✦ n n y yb Section 3.2
Xoodyak ✦ y n y y Appendix B.4

Ascon ✓ y y y y Section 3.3
Isap ✓ y y y y Appendix B.5

Schwaemm ✓ y y yc y Appendix B.6
a This is only the case for two out of three parameter sets, including the main one.
b TinyJambu can be viewed as a sponge construction based on a block-cipher.
c This holds for our slightly modified version SchwaemmIV, but not the original one.

these committing notions, they also coin the term context discovery attacks. In contrast
to committing attacks, which require the adversary to find two contexts that decrypt
the same ciphertext, context discovery attacks require finding a context that decrypts a
given ciphertext. Concurrently to [MLGR23], Chan and Rogaway [CR22] also developed
a fine-grained definitional framework for committing security, for instance, allowing for
variants where the adversary has to use honest keys, i.e., randomly sampled ones.

In concurrent and independent work, Naito et al. [NSS23] study the committing security
of Ascon. While we aim at analyzing all NIST finalists, the focal point of their work is on
giving an exhaustive analysis of Ascon. They study both the mode and the underlying
permutation of Ascon, whereas we focus our analysis on the mode. Further, they analyze
how committing security can be increased by zero-padding the message. The results on
the committing security of the unmodified Ascon mode, treated in both works, agree.

2 Authenticated Encryption and the NIST LWC Finalists
In this section, we introduce the notation and recall important definitions. We then
provide a general classification of the NIST LWC finalists and high-level approaches for
the committing attacks.

2.1 Notation
Throughout this work, we write {0, 1}∗ for the set of bit strings with arbitrary length. By
{0, 1}≤r ({0, 1}≥r) we denote the set of bit string with length at most r (at least r). For a
bit string S of length n, we write ⌈S⌉r, ⌊S⌋c, and [S]ji for the first r bits, the last c bits,
and the i-th to j-th bits of S, respectively. For bit strings X, Y , and Z, |X| describes the

196 Committing AE from Sponges

Game CMT (CMT-3 in [BH22])
1 : (K, N, A, M), (K, N, A, M)← A()
2 : if (K, N, A) = (K, N, A)
3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Figure 1: Security game CMT.

length of X and Y ∥ Z denotes the concatenation of Y and Z. For an integer k, the set
{1, . . . , k} is written as [k]. We write X1, . . . , Xl

r←− X to denote that X is split into bit
strings X1 to Xl s.t. |Xi| = r, for i ∈ [l − 1] and |Xl| ≤ r. Bit rotation resp. bit shift
of x by b bits to the left is written as x ≪ b resp. x≪ b (≫ resp. ≫ denote the same
in the other direction). The encoding of x into one byte is described by enc8(x). For
sake of simplicity, we use ι as a generic value for domain separation in several schemes
as our results are independent of it. Standard cryptographic background on sponges,
block-ciphers (BC), and tweakable block-ciphers (TBC) as well as some results needed for
our proofs are given in Appendix A.

2.2 Definitions
We recall the definitions of authenticated encryption and committing security.

Definition 1. An authenticated encryption (AE) scheme with associated data is a pair of
two algorithms (Enc, Dec) such that

• Enc : K × N × A ×M → C takes a key K, a nonce N , associated data A, and a
message M as input and outputs a ciphertext (C, T).

• Dec : K × N × A × C → M∪ {⊥} takes a key K, a nonce N , associated data A,
and a ciphertext (C, T) as input and outputs a message M or ⊥.

The sets K, N , A, M, and C denote the key space, nonce space, associated data space,
message space, and ciphertext space, respectively. Throughout this work, we consider
these sets to be bit strings of certain length, more precisely, K = {0, 1}κ, N = {0, 1}ν ,
A = {0, 1}∗, M = {0, 1}∗, and C = {0, 1}∗ × {0, 1}τ . An AE scheme is called correct,
if Dec(K, N, A, Enc(K, N, A, M)) = M , for any (K, N, A, M). We note further that
all considered schemes are tidy [NRS14], i.e., M = Dec(K, N, A, C) implies that C =
Enc(K, N, A, M). Following [MLGR23], we call the triple (K, N, A) a context.

Simply speaking, committing security requires the adversary to find two context-message
pairs that encrypt to the same ciphertext. We recall some weaker forms in Appendix A.

Definition 2. Let Ae = (Enc, Dec) be an authenticated encryption scheme and the
game CMT be defined as in Fig. 1. For any adversary A, its CMT advantage is defined as

AdvCMT
Ae (A) := Pr[CMT(A)→ 1] .

2.3 NIST LWC Finalists
The NIST LWC standardization process [NIST15] required the submitted AE schemes to
achieve the well-established notions of confidentiality and authenticity. For the former, the

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 197

EncM

EncT

M

N

K

A

C

T

EncC

EncM

A

N

K

M

S

(C, T)

Figure 2: Illustration of Encrypt-then-MAC schemes (left) and Context-pre-Processing
schemes (right). Both Elephant and Isap are Encrypt-then-MAC schemes. The other
schemes are Context-pre-Processing schemes. The dotted/dashed arrows indicate that
only some of the analyzed schemes exhibit these dependencies: Photon-Beetle and
Xoodyak have neither of the two; Gift-Cofb, TinyJambu, Ascon, and Schwaemm
have only the dashed arrow; and Romulus has both arrows.

requirement was to maintain security as long as nonces are unique—security in case of
repeating nonces can be mentioned as a special feature. Committing security is neither
mentioned as a requirement nor a feature to be advertised. However, it is important to
note that the call for algorithms was published the same year as the first attack [DGRW18]
that exploited the absence of committing security. Due to the more recent research in this
area, it can be expected that committing security will either become a requirement or at
least a feature considered relevant for cryptographic standards.6

The AE schemes that we study in this work are the NIST LWC finalists that are
based on (tweakable) block-ciphers or permutations.7 Details on the classification and
parameters of the schemes can be found in Appendix A.1—note that for each candidate
we focus on the main parameter set.

2.3.1 Classes of AE Schemes.

The considered schemes can be divided into two classes. The first class encompasses AE
schemes that follow the Encrypt-then-MAC (EtM) paradigm [BN00]. These schemes first
encrypt the message and subsequently authenticate the resulting ciphertext alongside the
nonce and the associated data. The second class comprises AE schemes that follow what we
call Context-pre-Processing (CpP). These schemes first process the context (K, N, A) via a
function EncC. The result is then processed together with M , and optionally K and N ,
yielding the ciphertext (C, T) via a function EncM. Both classes are illustrated in Fig. 2.
Out of the schemes that we analyze in this work, Elephant and Isap follow the EtM
paradigm, whereas the others—Romulus, Photon-Beetle, Gift-Cofb, Xoodyak,
TinyJambu, Ascon, and Schwaemm—follow the CpP-approach.

Attacking Encrypt-then-MAC Schemes. For the EtM schemes, we can focus on the
underlying MAC. Once we have two contexts (K, N, A) ̸= (K, N, A) that verify the same
ciphertext (C, T), we can immediately derive a committing attack. This is the case because
for the described contexts, the decryption algorithm will return some messages M, M ≠ ⊥.8
Using the tidyness property, we get Enc(K, N, A, M) = (C, T) = Enc(K, N, A, M), hence
winning the game CMT.

Attacking Context-pre-Processing Schemes. For the CpP schemes, we focus on the
state S that is outputted by EncC and then fed into EncM. The general idea is to generate
the first context (K, N, A) and a message M at random, and compute the corresponding

6A recent NIST workshop [NIST23] mentions committing security as a desirable property.
7This covers all finalists except Grain-128aead [HJM+21].
8For both Elephant and Isap, the underlying decryption algorithm never returns ⊥, thus the AE

scheme returns ⊥ iff the verification of the tag fails.

198 Committing AE from Sponges

ciphertext (C, T). Then, we invert EncM for the same ciphertext (C, T) and—depending
on the scheme—a different key K and nonce N , which yields the state S (along with
the message M). In the last step, we find associated data A such that EncC with input
(K, N, A) results in S, which ultimately yields a committing attack as Enc(K, N, A, M) =
EncM(K, N, EncC(K, N, A), M) = EncM(K, N, S, M) = (C, T). The step of finding A
is essentially what was recently coined a context discovery attack [MLGR23]. This is
a stronger attack that easily translates to a committing attack as shown in [MLGR23].
Indeed, our attacks against Romulus, Gift-Cofb, Elephant, and Photon-Beetle
can easily be translated into context discovery attacks; for the other committing attacks
this is not the case.

2.3.2 State-Update-Function.

Out of the nine finalists, Romulus, Gift-Cofb, Photon-Beetle, and Schwaemm
deploy a so-called state-update-function (this name is adopted from [IKM+21]). This
function—which we will generally denote by ξ—takes as input a state S and some additional
input data I, and outputs a new state Y and additional output data O. The state-update-
functions works very similar for all four schemes: one of the outputs is the XOR of the
inputs whereas the other is the XOR of the input data I and some underlying function—
which depends on the respective scheme—applied to the input states. Details are given in
Appendix A.1.

Typically, the state-update-function is used to process the associated data and the
message: The current state is used as the input state S while the associated data or the
message—more precisely, a block of it—is used as the input data I. The output state Y is
used as the new state while the output data O yields the ciphertext or is simply discarded
when the associated data is processed. For decryption, the schemes use the inverse of ξ.
Here it is important to note that, inverse is to be understood only in relation to the output
data, i.e., for any (S, I), ξ(S, I) = (Y, O)⇒ ξ−1(S, O) = (Y, I).

For our attacks against Romulus and Gift-Cofb, we need to invert the state-update-
function with respect to both outputs, which is not obviously possible from the specifications.
Our attack against Photon-Beetle is independent of the used state-update-function and
for Schwaemm the state-update-function is incorporated into our security proof.

2.3.3 Achieving Committing Security via Transformations.

There are several transformations that turn an arbitrary AE scheme into one that is com-
mitting. Clearly, such transformations can be applied to the NIST LWC finalists to make
them committing. However, there are several reasons against this: Firstly, these transfor-
mations often do not achieve CMT security as we target here but weaker notions [MLGR23].
Secondly, these transformations impose some overhead which—especially considering the
lightweight aspect of these schemes—might render them impractical. Thirdly, consider,
say, Isap, which comes with a formal security proof incorporating side-channel leakage.
Since none of the transformations are analyzed w.r.t. side-channel leakage, applying them
to Isap can render the leakage security guarantees obsolete.9

3 Committing Security Analysis
Here, we analyze the CMT security of the NIST LWC finalists. For Romulus (cf. Sec-
tion 3.1) we give an attack that breaks committing security with essentially no cost—
requiring the bare minimum of two encryptions. For TinyJambu (cf. Section 3.2), we

9Very recently, Struck and Weishäupl [SW24] developed a generic transformation that turns an AE
scheme into one that is both committing and leakage-resilient.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 199

provide a committing attack requiring about 233 queries. For Ascon (cf. Section 3.3) we
give a formal proof showing that the scheme achieves committing security of about 64-bit.
These three schemes represent the different kind of results we have for the NIST LWC
finalists and illustrate the core ideas. At the end of each section, we briefly discuss the
remaining schemes with similar results and a formal analysis is given in Appendix B.

Our analysis covers all of the NIST LWC finalists except Grain-128aead, which we
exclude due to our focus on schemes based on (tweakable) block-ciphers and permutations.
While it is easy to see that the committing security of Grain-128aead is upper-bound at
32-bit (as there is only one parameter set featuring a 64-bit tag), developing more efficient
attacks requires a dedicated analysis. In particular, the so-called accumulator used in
Grain-128aead for tag generation has to be analyzed in detail: Since Grain-128aead is a
stream cipher, achieving the same ciphertexts can be easily done, while the more challenging
part seems to be forcing same tags. The accumulator gathers message, associated data,
and a pseudorandom bit string into the final tag; it is however no ideal primitive, i.e., a
concrete analysis is necessary to find better committing attacks (or exclude the existence
of such).

3.1 Romulus
Romulus [IKM+21, IKMP20] is an authenticated encryption scheme based on tweakable
block-ciphers. For the concrete instantiation of the TBC, they use Skinny [BJK+16] and
the authenticated encryption mode bears similarities with Cofb [CIMN17]. Romulus
comes in three different variants Romulus-N, Romulus-M, and Romulus-T. The former
is the main candidate while the other two are designed with additional security guarantees in
mind: Romulus-M achieves security against nonce-misuse while Romulus-T is designed
to maintain security even in the presence of side-channel leakage. Throughout this work
we only consider the main variant Romulus-N, which we simply refer to as Romulus.

3.1.1 Description of Romulus

The pseudocode of Romulus is given in Fig. 4. The scheme is further illustrated in Fig. 3.
It follows the CpP-approach, i.e., it first computes S ← EncC(K, N, A) and afterwards
(C, T) ← EncM(K, N, S, M). Both EncC and EncM apply the tweakable block-cipher
and the state-update-function ξ in an alternating manner. The latter, i.e.,

ξ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, ξ(S, I) = (S ⊕ I, G(S)⊕ I)

is an important component of Romulus and the matrix G it utilizes, is

G =

Gs 0 0 · · · 0
0 Gs 0 · · · 0
...
0 · · · 0 Gs 0
0 · · · 0 0 Gs

 , where Gs =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

 .

3.1.2 Committing Attack Against Romulus

We show that Romulus does not achieve CMT security. The attack is stated in the
following theorem.

Theorem 1. Consider Romulus which is illustrated and described in Fig. 3 and Fig. 4,
respectively. Let TBC be modeled as an ideal tweakable cipher Ẽ. Then there exists an

200 Committing AE from Sponges

0n ξ TBC(·)
K

. . . ξ TBC(·)
K

ξ TBC(·)
K S

A1 A2 Aα−1 Aα 0n N

S ξ TBC(·)
K

ξ TBC(·)
K

. . . ξ TBC(·)
K

ξ

M1 Mµ−1 MµN N N 0n

C1 Cµ−1 Cµ T

Y∗

Figure 3: Illustration of Romulus (for α an even number) in terms of EncC (top) and
EncM (bottom). The values that are input from the top into TBC(·)

K are used as tweaks
(for simplicity, we drop the counters making the tweaks unique). The state Y∗, marked in
red, is used in our CMT attack.

adversary A, making q queries to Ẽ, such that

AdvCMT
Romulus(A) = 1 ,

where q = 2µ +
⌊

α
2

⌋
+

⌊
α
2

⌋
+ 2. Here, µ is the number of message blocks, α is the number

of associated data blocks of the first tuple, and α is the number of blocks for the second
tuple that A outputs.

For the proof of Theorem 1, we formulate and prove three lemmas. Firstly, we show
that the state-update-function ξ is invertible (Lemma 1). Secondly, we prove that we can
invert both EncC and EncM (Lemma 2 and Lemma 3), where, for the latter, we make
use of the invertibility of ξ.

Recall that the state-update-function ξ of Romulus maps a state S and an input I to
a new state Y and an output O. In Romulus.Dec, the inverse of ξ is considered, however,
inverse is understood only in relation to the output data. This means that the inverse
function will not invert the state. When looking at Romulus, one can see that the output
of ξ is discarded in EncC—a fact that will be exploited later. For our attack against
EncM, this no longer works, as we have to invert the output of ξ while maintaining equal
ciphertexts. The following lemma shows that we can invert ξ with respect to both its
output and state. We write M for the input and C for the output of ξ (instead of I and
O), which is the case for our scenario.

Lemma 1. The state-update-function of Romulus is invertible.

Proof. Note that ξ can be expressed as the block-matrix
(

id id
G id

)
and hence in order

to show the claim, we need to find a right-sided inverse to this matrix. For + denoting
component-wise addition mod 2, consider

(
F F

F + id F

)
,

with F =

Fs 0 0 · · · 0
0 Fs 0 · · · 0
...
0 · · · 0 Fs 0
0 · · · 0 0 Fs

 and Fs =

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1

 .

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 201

Romulus.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(K, N, S, M)
3 : return (C, T)

EncC(K, N, A)
4 : A1, . . . , Aα

n←− padL(A, n)
5 : S ← 0n

6 : for i = 1, . . . ,
⌊

α
2

⌋
7 : (Y, ·)← ξ(S, A2i−1)

8 : S ← TBCA2i (K, Y)
9 : V ← 0n

10 : if α mod 2 ̸= 0
11 : V ← Aα

12 : (Y, ·)← ξ(S, V)

13 : S ← TBCN (K, Y)
14 : return S

EncM(K, N, S, M)
15 : M1, . . . , Mµ

n←− padL(M, n)
16 : for i = 1, . . . , µ− 1
17 : (Y, Ci)← ξ(S, Mi)

18 : S ← TBCN (K, Y)
19 : (Y, Cµ)← ξ(S, Mµ)

20 : S ← TBCN (K, Y)
21 : (·, O)← ξ(S, 0n)
22 : T ← ⌈O⌉τ
23 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

24 : return (C, T)

ξ(S, I)
25 : Y ← S ⊕ I

26 : O ← G(S)⊕ I

27 : return (Y, O)

Figure 4: Pseudocode of Romulus [IKM+21] in terms of EncC and EncM. For sake of
simplicity, we drop the counter that is part of the tweak.

Observe that(
id id
G id

)
·
(

F F
F + id F

)
=

(
F + F + id F + F

GF + F + id GF + F

)
=

(
id 0
0 id

)
,

where the last equality follows from a direct computation which shows that GsFs + Fs =
Fs(Gs + id) = id and thus GF + F = Fs(G + id) = id.

Next, we give an adversary that inverts EncC, i.e., for a given output S of EncC and
a partial context (K, N), it finds matching associated data. We exploit the fact that the
associated data blocks are XORed to the full state in EncC. The detailed proof can be
found in Appendix C.1.

Lemma 2. Consider Romulus which is illustrated and described in Fig. 3 and Fig. 4,
respectively. There exists an adversary AC, making q queries to Ẽ such that for any
(K, N, S) ∈ K ×N × {0, 1}n, it holds that

Pr[EncC(K, N, A) = S | A← AC(K, N, S)] = 1 .

The number of ideal tweakable cipher queries by AC is q =
⌊

α
2

⌋
+ 1 for α being the number

of associated data blocks that AC outputs.

We now give an adversary that inverts EncM, i.e., for a given ciphertext (C, T) and a
partial input (K, N), it finds a matching pair of state S and message M . The attack relies
heavily on the invertibility of ξ as shown in Lemma 1 and is proven in Appendix C.2.

Lemma 3. Consider Romulus which is illustrated and described in Fig. 3 and Fig. 4,
respectively. There exists an adversary AM, making q queries to Ẽ such that for any
(K, N, (C, T)) ∈ K ×N × C, it holds that

Pr[EncM(K, N, S, M) = (C, T) | (S, M)← AM(K, N, (C, T))] = 1 .

202 Committing AE from Sponges

Romulus adversary A()
1 : (K, N, A, M)←$K ×N ×A×M
2 : (C, T)← Enc(K, N, A, M)
3 : (K, N)←$K ×N
4 : (S, M)← AM(K, N, (C, T))
5 : A← AC(K, N, S)
6 : return (K, N, A, M), (K, N, A, M)

EncM adversary AM(K, N, (C, T))
7 : C1, . . . , Cγ

n←− C

8 : S ← G−1(T)
9 : for i = µ, . . . , 1 do

10 : Y ← Ẽ−1(K, N, S)
11 : (S, Mi)← ξ−1(Y, Ci)
12 : M ←M1 ∥ . . . ∥Mµ

13 : return (S, M)

EncC adversary AC(K, N, S)
14 : α←$ 2N
15 : A2, . . . , Aα ←$ {0, 1}n

16 : Aα+1 ← 0n

17 : Y ← Ẽ−1(K, N, S)
18 : for i = α

2 , . . . , 1 do
19 : S ← Y ⊕A2i+1

20 : Y ← Ẽ−1(K, A2i, S)
21 : A1 ← Y

22 : A← A1 ∥ . . . ∥ Aα

23 : return A

Figure 5: Romulus adversary A from Theorem 1 which uses the inverse state-update-
function ξ−1 from Lemma 1.

The number of ideal tweakable cipher queries by AM is q = µ for µ being the number of
ciphertext blocks that AM receives as input.

Proof (of Theorem 1). We construct the following adversary A against Romulus as shown
in Fig. 5. It samples a context (K, N, A) together with a message M at random and
computes the ciphertext (C, T) ← Romulus.Enc(K, N, A, M). It then samples (K, N)
at random, computes (S, M) ← AM(K, N, (C, T)), and A ← AC(K, N, S). Finally, A

outputs (K, N, A, M), (K, N, A, M). By using Lemma 2 and Lemma 3, we obtain

Romulus.Enc(K, N, A, M) = Romulus.Enc(K, N, A, M) .

As for the number of queries to the ideal tweakable cipher Ẽ, A makes µ +
⌊

α
2

⌋
+ 1 while

computing the ciphertext (C, T) for the first tuple and additionally µ and
⌊

α
2

⌋
+ 1 queries

while running AM and AC, respectively. This accumulates to q = 2µ +
⌊

α
2

⌋
+

⌊
α
2

⌋
+ 2

queries in total and concludes the proof.

The gist of the attack is finding a different A which yields the target ciphertext. The
attack easily extends to a context discovery attack (CDY⋆

A) [MLGR23]. Hence, we can
conclude that Romulus is also vulnerable with respect to the weaker security notions
CMTK and CMTN by using [MLGR23, Corollary 3]. Furthermore, the attack can be
translated to one against CMTA by observing that the adversary can choose A to differ
from A at some point (note that A can freely choose all but one block). Finally, the attack
is also extendable to the more restricted notion CMT⋆

A by choosing the second key-nonce
pair (K, N) not at random but equal to the first pair (K, N).

Similar Results. Just as Romulus, we can attack Elephant (cf. Appendix B.1),
Gift-Cofb (cf. Appendix B.2), and Photon-Beetle (cf. Appendix B.3) with a minimum
number of queries. The attack against Gift-Cofb is very similar to the one given here,
the core difference is the state-update-function. The attack against Elephant is even
simpler as the scheme does not use a state-update-function. For Photon-Beetle, our
attack exploits the choice of its initial state.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 203

ρ2 ρ1 ρ1 ρ1 ρ1 . . .0128 S

N1 N2 N3 A1 Aα

ιN ιN ιN ιA ιA

ρ2 ρ2 ρ2 ρ1. . .S

Tl Tr
M1 M2 MµC1 C2 Cµ

ιM ιM ιM ιT ιT

Figure 6: Illustration of TinyJambu in terms of EncC (top) and EncM (bottom), where
ρ1 = BC1(K, ·) and ρ2 = BC2(K, ·).

3.2 TinyJambu
TinyJambu [WH21] is a block-cipher-based authenticated encryption scheme. The speci-
fication introduces the TinyJambu mode, which is a lightweight variant of the Jambu
mode [WH16]. The latter was part of the CAESAR competition [Ber14]. For the permu-
tation underlying TinyJambu, a keyed permutation based on non-linear feedback shift
registers is defined.

3.2.1 Description of TinyJambu

The pseudocode of TinyJambu is given in Fig. 7 and an illustration of the scheme can be
found in Fig. 6. TinyJambu follows the CpP-approach, i.e., it first processes the context
(K, N, A) via the function EncC and then passes the output on to EncM, where it is
processed together with the message. TinyJambu uses two keyed permutations BC1 and
BC2, both based on the same keyed permutation that is applied 640 and 1024 times for
BC1 and BC2, respectively.

3.2.2 Committing Attack Against TinyJambu

In this section, we show that TinyJambu does not achieve CMT security.10 The attack
exploits the short tag length of 64 bits in TinyJambu, which enables an efficient deployment
of the birthday bound. In the security proof of TinyJambu (see [WH21, Section 6]), this
setting is modeled with only one permutation ρ. We adopt the same for the TinyJambu
attack given in the following.

Theorem 2. Consider TinyJambu which is illustrated and described in Fig. 6 and Fig. 7,
respectively. Let BC1 and BC2 be modeled as an ideal cipher E. Then there exists an
adversary A that makes q queries to E such that

AdvCMT
TinyJambu(A) ≥ 3

8 .

Here, q = 2(232 + 1)(6 + α + µ) for α and µ the number of associated data and message
blocks, respectively, that A outputs.

10Dunkelmann et al. [DGL23] show that TinyJambu is not CMTK-secure. Their committing attack
is based on a related-key forgery attack on the underlying block-cipher and only applies to the larger
parameter sets but not the main one. In contrast, our attack is based on the mode and works for all
parameter sets.

204 Committing AE from Sponges

TinyJambu.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(K, S, M)
3 : return (C, T)

EncC(K, N, A)
4 : N1, N2, N3

32←− N

5 : A1, . . . , Aα
32←− pad0∗ (A, 32)

6 : S ← BC2(K, 0128)
7 : for i = 1, . . . , 3
8 : S ← S ⊕ (064 ∥ ιN)
9 : S ← BC1(K, S)

10 : S ← (⌈S⌉32 ⊕Ni) ∥ ⌊S⌋96

11 : for i = 1, . . . , α

12 : S ← S ⊕ (064 ∥ ιA)
13 : S ← BC1(K, S)
14 : S ← (⌈S⌉32 ⊕Ai) ∥ ⌊S⌋96

15 : return S

EncM(K, S, M)
16 : M1, . . . , Mµ

32←− pad0∗ (M, 32)
17 : for i = 1, . . . , µ

18 : S ← S ⊕ (064 ∥ ιM)
19 : S ← BC2(K, S)
20 : S ← (⌈S⌉32 ⊕Mi) ∥ ⌊S⌋96

21 : Ci ← [S]64
33

22 : S ← S ⊕ (064 ∥ ιT)
23 : S ← BC2(K, S)
24 : Tl ← [S]64

33

25 : S ← S ⊕ (064 ∥ ιT)
26 : S ← BC1(K, S)
27 : Tr ← [S]64

33

28 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

29 : T ← Tl ∥ Tr

30 : return (C, T)

Figure 7: Pseudocode of TinyJambu [WH21] in terms of EncC and EncM. If the last
block of associated data or message is not of full length, TinyJambu XORs the respective
lengths into the last bits (as part of ιA and ιM).

Proof. We construct a CMT adversary A against TinyJambu as follows: First, we ran-
domly choose two different keys K ̸= K and a target ciphertext C. Note that, due to
the structure of TinyJambu, the context produces a key stream which is XORed with
the message to obtain the ciphertext. Hence, for a random context it is always possible
to find a M such that the TinyJambu encryption results in the initially chosen target
ciphertext C. In the following, we will implicitly consider this “matching” message for
each context that occurs. Hence it suffices to find two different contexts that—together
with their matching message—yield colliding tags.

We start by building two lists of tags, where for one we use K as key and in the other K.
For this, sample distinct (Ni, Ai) for i ∈ {1, . . . , 232 + 1} and compute the corresponding
tags Ti using the key K. We then set L = (Ti)i∈[232+1]. Analogously, we sample distinct
(N i, Ai)11 for i ∈ [232 + 1] and write the corresponding tags T i (computed using K) into
the list L = (T i)i∈[232+1]. Building the two lists, takes a total of q = 2(232 + 1)(6 + α + µ)
queries to ρ.

For the context (K, Ni, Ai), denote the states before the second to last permutation
application (see Fig. 6) by Si, and analogously for (K, N i, Ai) by Si. Note that for a fixed
key, TinyJambu can be considered a sponge-based function with rate r = 32 and capacity
c = 96. Therefore, the event Si = Sj for i ̸= j (and analogously Si = Sj for i ̸= j),
constitutes an inner collision, which is—for a sponge with capacity 96—highly unlikely12.
As we model both BC1 and BC2 by an ideal cipher E and the states Si (and respectively
Si) collide with negligible probability, we can assume the list elements to be distributed
uniformly and independently.

This puts us in the situation of Lemma 5 (for l1 = l2 = 232 + 1 and τ = 64), hence we
11For sake of simplicity, we assume that A chooses the Ai with same block length.
12More precisely, the probability is q(q+1)

297 − q(q−1)
2129 [BDPVA07].

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 205

obtain the following lower bound for finding a collision Ti = T j :(
1− exp

(
−(233 + 2)(233 + 1)

265

))
· 2 · (232 + 1)2

(233 + 2)2 − (233 + 2) . (1)

Since −(233+2)(233+1)
265 ≤ −233·233

265 = −2 the first factor in Eq. (1) can be bounded below by
1− exp

(
−(233+2)(233+1)

265

)
≥ 1− e−2 ≥ 3

4 . The second factor in Eq. (1) simplifies to 232+1
233+1

which is lower bound by 1
2 . In total, the probability for finding a tag collision (and hence

winning the game CMT) is at least 3
8 .

The attack exploits the fact that TinyJambu uses a very short tag (64 bits) compared
to the other schemes—the only other scheme considered in this work with a 64-bit tag is
Elephant, though they also provide a parameter set with a larger tag. Increasing the tag
length of TinyJambu would render our attack impractical. Note, however, that increasing
the tag length to 128 does not make TinyJambu committing secure. For such a variant of
TinyJambu, we can similarly apply a birthday attack to find a collision on the capacity
part, while the associated data is processed. Such a 96-bit collision can be found with
about 248 queries and, by properly choosing the associated data, results in a full collision.
One can modify the parameters such that a 127-bit collision has to be found—though this
variant is impractical as the inputs would be absorbed bit-wise.

By construction, the above attack is a CMTK attack, as K and K were chosen to be
different. Moreover, by requiring not only the tuples (Ni, Ai) to differ for all i, but the
individual nonces and associated data, we also obtain a CMTN and a CMTA attack.

Similar Results. The sponge-based AE scheme Xoodyak (cf. Appendix B.4) can also
be efficiently attacked using a birthday attack. We target the full-state sponge part of
Xoodyak when the associated data is processed. Due to the padding of Xoodyak, the
adversary cannot control the entire state—32 bits are reserved for the padding. Hence, a
birthday attack on these 32 bits is required which then extends to a CMT attack.

3.3 Ascon
Ascon [DEMS21] is a sponge-based AE scheme. The scheme was chosen as the primary
candidate for lightweight applications in the CAESAR competition. Furthermore, Ascon
was selected to be standardized as part of the NIST LWC standardization process. As part
of the CAESAR competition and the NIST LWC standardization process, Ascon enjoys a
long line of research, in particular, with respect to the underlying permutation Ascon-P.
For the authenticated encryption mode, no formal security analysis existed until recently,
when Lefevre and Mennink [LM24] gave the first security proof for Ascon.13

3.3.1 Description of Ascon

The pseudocode of Ascon is given in Fig. 9 and further illustration is provided in Fig. 8.
Similar to the other schemes, Ascon can be viewed as a CpP scheme which first processes
the context using EncC before the message is processed using EncM. A core feature
of Ascon is that at the very start (first permutation of EncC) and the very end (last
permutation of EncM), it uses more rounds of the underlying permutation for security
(ρa and ρb for a = 12 and b = 6). Note that Ascon XORs the key three additional times:
After the first permutation as well as before and after the last permutation. We call the
former two instances state-blinding and the latter output-blinding.

13An earlier work [JLM14] showed security for a simplified version of Ascon.

206 Committing AE from Sponges

IV ∥ K ∥ N

ρa ρb ρb ρb S

. . .

. . .

A1 Aα−1 Aα

0c−κ ∥ K 0c−1 ∥ 1

S ρb ρb ρa

TM1 Mµ−1 MµC1 Cµ−1 Cµ

. . .

. . .

K ∥ 0c−κ K

Figure 8: Illustration of Ascon in terms of EncC (top) and EncM (bottom).

3.3.2 Committing Security of Ascon

We show that Ascon achieves CMT security. We model the two permutations ρa and ρb

by one ideal permutation ρ, essentialy adopting the approach of Isap [DEM+20], where
the different permutations for the re-keying function are also modeled by one random
permutation. Further, we consider a slightly different order of inputs at two points in
the Ascon encryption. Firstly, the initial state is changed by moving the initialization
vector from the beginning of the state to the end. Secondly, the state-blinding is changed
so that it affects the first bits of the inner state rather than the last bits.14 Note that
these changes are purely cosmetic. They do not influence the overall security of Ascon
but simplify our proof, as we can capture the state-blinding by considering a larger rate.
Lastly, for sake of simplicity, we drop the domain separation of Ascon in the proof. It can,
however, be easily incorporated by XORing 1 ∥ 0c−1 instead of 0c−1 ∥ 1, i.e., moving the
domain separation to the first bit of the capacity as opposed to the last bit. This neither
influences the security of Ascon nor interferes with the purpose of the domain separation
but it allows us to incorporate the domain separation into the rate.15

We show committing security of Ascon by arguing about the collision resistance of
plain sponges—an alternative approach is to make use of the indifferentiability, as was
done in concurrent and independent work [NSS23]. Theorem 9 provides a bound for the
collision resistance of plain sponges, however, applying it to (a plain sponge version of)
Ascon does not yield a good bound. The reason for this is that the capacity of Ascon’s
initial state (64 bits) is small compared to the one of the remaining states (≥ 128 bits). As
part of our argument, we prove that Theorem 9 also holds if the initial state has a smaller
capacity than the rest of the sponge construction.16

This generalized version of [BS23, Theorem 8.6] uses the same graph modelling as the
original proof. We consider a sponge-based hash function H, obtained from a permutation
ρ : {0, 1}n → {0, 1}n, with capacity c, rate r, initial capacity c⋆, and output length w ≤ r.
We model a CR adversary against H as follows: We build a directed graph G from the
ideal permutation queries the adversary makes. The nodes in G are the 2n bit strings of

14This only affects the first state-blinding; the second one is already of that form.
15The same argument appears in [DJS19] (AE scheme Slae) and [DHP+21] (Xoodyak).
16Naito and Ohta [NO14] showed that a smaller capacity in the initial state can also be tolerated when

considering indifferentiability, which the initial result [BDPV08] did not.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 207

Ascon.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(K, S, M)
3 : return (C, T)

EncC(K, N, A)
4 : A1, . . . , Aα

r←− pad10∗ (A, r)
5 : S ← ρa(IV ∥ K ∥ N)
6 : S ← S ⊕ (0n−κ ∥ K)
7 : for i = 1, . . . , α

8 : Y ← S ⊕ (Ai ∥ 0c)

9 : S ← ρb(Y)
10 : S ← S ⊕ (0n−1 ∥ 1)
11 : return S

EncM(K, S, M)
12 : M1, . . . , Mµ

r←− pad10∗ (M, r)
13 : Y ← S ⊕ (M1 ∥ 0c)
14 : C1 ← ⌈Y ⌉r
15 : for i = 2, . . . , µ

16 : S ← ρb(Y)
17 : Y ← S ⊕ (Mi ∥ 0c)
18 : Ci ← ⌈Y ⌉r
19 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

20 : Y ← Y ⊕ (0r ∥ K ∥ 0c−κ)
21 : S ← ρa(Y)
22 : T ← ⌊S⌋τ ⊕K

23 : return (C, T)

Figure 9: Pseudocode of Ascon [DEMS21] in terms of EncC and EncM.

length n and an edge from Y to S is added if A makes a query of the form ρ(Y) = S
or ρ−1(S) = Y (the graph starts with no edges). The edges resulting from ρ queries are
called forward edges and the ones resulting from ρ−1 queries are referred to as backward
edges. For s ≥ 1, a PS-path of length s is a sequence of 2s nodes

Y0, S1, Y1, S2, . . . , Ss−1, Ys−1, Ss

with
1. ⌊Y0⌋c⋆ = IV,

2. ⌊Yi⌋c = ⌊Si⌋c for all i ∈ {1, . . . , s− 1}, and

3. G contains edges from Yi−1 to Si for all i ∈ {1, . . . , s}.
We define the input of a PS-path as I :− (Z0, . . . , Zs−1) ∈ {0, 1}n−c⋆×{0, 1}r×· · ·×{0, 1}r

for Z0 = ⌈Y0⌉n−c⋆ and Zi = ⌈Si⌉r ⊕ ⌈Yi⌉r for all i ∈ {1, . . . , s− 1}. Further, we define the
result of a PS-path as ⌈Ss⌉w which corresponds to the output of the hash function. As a
notation for PS-paths that incorporates the input, we write

Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss .

Next, we define two properties a pair (P, P) of PS-paths can have. For this, denote the
nodes in P by Y 0, S1, Y 1, . . . , Y l−1, Sl. Firstly, the paths P and P are colliding if their
inputs differ but their results agree. Secondly, the paths P and P are problematic if their
inputs differ and

1. Yl−1 = Y l−1 or

2. at least one of the edges in P or P is a backward edge.
We can show the following lemma regarding the probability of finding a pair of problematic
paths. The proof can be found in Appendix C.3.
Lemma 4. Consider the graph modelling as described above. Let PP be the event that A
finds a pair of problematic paths and q the number of queries that A makes to ρ, then

Pr[PP] ≤ q

2c⋆−1 + q(q − 1)
2c

.

208 Committing AE from Sponges

Using this result yields a generalization of [BS23, Theorem 8.6] to the case that the
initial state has a smaller capacity. This is proven in Appendix C.4.

Theorem 3 (Generalized version from [BS23, Theorem 8.6]). For H a hash function
obtained from a permutation ρ : {0, 1}n → {0, 1}n, with capacity c, rate r (so n = r + c),
initial capacity c⋆, and output length w ≤ r, it holds that

AdvCR
H (A) ≤ q(q − 1)

2w
+ q

2c⋆−1 + q(q − 1)
2c

.

The theorem below establishes the committing security of Ascon.

Theorem 4. Consider Ascon which is illustrated and described in Fig. 8 and Fig. 9,
respectively. Let ρa and ρb be modeled as a random permutation ρ. Then for any adversary
A making q ≤ 2127 queries to ρ, it holds that

AdvCMT
Ascon(A) ≤ 1− exp

(
−q(q − 1)

2128

)
+ q

263 + q(q − 1)
2128 .

Proof. Let A be a CMT adversary against Ascon with output denoted by (K, N, A, M),
(K, N, A, M). Further note that IV denotes the initialization vector used in Ascon. As a
first step, we observe that finding different inputs to the Ascon encryption that give the
same ciphertext is easy due to the duplex construction used in the sponge. The difficulty
in breaking CMT security for Ascon lies in finding a tag collision, which is why we focus
our attention on this task. An adversary that wins the game CMT against Ascon, in
particular finds a tag collision, i.e., it wins the game TagColl (see Fig. 15). Hence we obtain

AdvCMT
Ascon(A) ≤ AdvTagColl

Ascon (A) .

We consider the directed graph described above for n = 320. We assume A to make queries
to ρ that correspond to its output, i.e., querying all states that occur during the evaluation
of Ascon for the output tuples of A. This assumption is without loss of generality, as we can
easily transform any adversary A into one that runs A to obtain (K, N, A, M), (K, N, A, M)
and—before outputting the same—makes all queries to ρ corresponding to (K, N, A, M)
and (K, N, A, M). Additionally, we assume A to make no redundant queries, i.e., once two
values (Y, S) are known to be connected via an edge, no further ρ queries are made on Y
and no further ρ−1 queries are made on S.

We define a special kind of path, the A-path, which models Ascon’s tag generation—
recall that we passed over to the game TagColl at the beginning of the proof. An A-path
Pa of length l17 is a sequence of 2l nodes

Y0, S1, Y1, S2, . . . , Sl−1, Yl−1, Sl

with the following four properties:

1. Y0 = K ∥ N ∥ IV,

2. ⌊Y1⌋256 = ⌊S1⌋256 ⊕ (K ∥ 0128) and ⌊Yl−1⌋256 = ⌊Sl−1⌋256 ⊕ (K ∥ 0128),

3. ⌊Yi⌋256 = ⌊Si⌋256 for all i ∈ {2, . . . , l − 2}, and

4. G contains edges from Yi−1 to Si for all i ∈ {1, . . . , l},

for some K, N ∈ {0, 1}128. We define the input of an A-path Pa as

I :− (K, N, X1, . . . , Xl−1) ∈ {0, 1}128 × {0, 1}128 × {0, 1}64 · · · × {0, 1}64

17Note that l ≥ 3, as Ascon involves at least three applications of ρ (for µ = α = 1).

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 209

for K ∥ N :− ⌈Y0⌉256 and Xi = ⌈Si⌉64 ⊕ ⌈Yi⌉64 for all i ∈ {1, . . . l− 1}. The result of Pa is
defined as R = ⌊Sl⌋128 ⊕K. By construction, this models the tag generation of Ascon:
The sponge processes the input consisting of key K, nonce N , and the tuple of associated
data and message (A, M) = (X1, . . . , Xl−1) and the result is the tag. As a notation for
A-paths that incorporates the input, we write

(K ∥ N)|Y0 → · · · → Sl−2|Xl−2|Yl−2 → Sl−1|Xl−1|Yl−1 → Sl .18

Next, we define two properties a pair (Pa, P a) of A-paths can have. For this, denote the
nodes in P a by Y 0, S1, Y 1, . . . , Y l−1, Sl. Firstly, the paths Pa and P a are colliding if their
inputs differ but their results agree. Secondly, the paths Pa and P a are problematic if their
inputs differ and (1) Yl−1 = Y l−1 or (2) at least one of the edges in P or P is a backward
edge. We are interested in the event CPa that A finds a pair of colliding A-paths. Note
that finding such paths means that A wins the game TagColl. In order to compute the
probability of CPa, we define the auxiliary event PPa that A finds a pair of problematic
A-paths. Using this, we obtain

AdvTagColl
Ascon (A) = Pr[CPa] ≤ Pr[CPa ∧ ¬PPa] + Pr[PPa] ,

and proceed by deriving upper bounds for both of the above summands.
We start with the easier case, which is giving an upper bound for the probability that

CPa ∧ ¬PPa holds, i.e., that A finds a pair of colliding A-paths that is not problematic.
Hence, A finds two different inputs I = (K, N, X1, . . . , Xl−1) and I = (K, N, X1, . . . , X l−1)
such that the corresponding A-paths

Y0, S1, Y1, S2, . . . , Sl−1, Yl−1, Sl

Y 0, S1, Y 1, S2, . . . , Sl−1, Y l−1, Sl

fulfill Yl−1 ̸= Y l−1 and have equal results, i.e., ⌊ρ(Yl−1)⌋128⊕K = R = R =
⌊
ρ(Y l−1)

⌋
128
⊕

K. By definition of an A-path, this implies⌊
ρ(Sl−1⊕(Xl−1∥K∥0128))

⌋
128 ⊕K =

⌊
ρ(Sl−1⊕(X l−1∥K∥0

128))
⌋

128
⊕K . (2)

Since ρ is a random permutation and A only used forward queries (as ¬PPa holds), finding
such a collision is unlikely. We assume—to the benefit of the adversary A—that it can
choose Sl−1, Sl−1 ∈ {0, 1}128 freely, i.e., it must not be part of an A-path for some input.
The probability of A finding (Sl−1, Xl−1, K), (Sl−1, X l−1, K)19 such that Yl−1 ̸= Y l−1
and Eq. (2) holds with q queries, equals the probability of finding a collision in a list of q
uniformly distributed elements. Using Theorem 11 for q ≤ 2127, the latter can be bounded
from above by

1− exp
(
−q(q − 1)

2128

)
.

Next, we turn our attention to deriving an upper bound for Pr[PPa]. Lemma 4 shows
that finding problematic paths is hard, even for a plain sponge without Ascon’s blinding
mechanisms, which is why we reduce to this setting. We consider a sponge-based hash
function H obtained from the permutation ρ with rate 256 for the first round of absorption
and rate 196 for all remaining ones. Further, its initial state is given by 0256 ∥ IV and
the output produced by H has length 128. We next observe that a pair of problematic

18While not visible in this representation, by definition of A-paths, Y1 and S1 (respectively Yl−1 and
Sl−1) differ not only in their first 64 bits but also from bit 65 to 192, where the key is XORed.

19Note that A must choose (Sl−1, Xl−1, K) ̸= (S
l−1, X

l−1, K) to ensure Yl−1 ̸= Y
l−1.

210 Committing AE from Sponges

A-paths, can also be considered as a pair of problematic PS-paths, i.e., in particular the
event PPa implies the event PP. Let (Pa, P a) be a pair of problematic A-paths, i.e.,

Pa =(K ∥ N)|Y0 → · · · → Sl−2|Xl−2|Yl−2 → Sl−1|Xl−1|Yl−1 → Sl

P a =(K ∥ N)|Y 0 → · · · → Sl−2|X l−2|Y l−2 → Sl−1|X l−1|Y l−1 → Sl .

By defining

Z0 = K ∥ N ∈ {0, 1}256 Z0 = K ∥ N ∈ {0, 1}256

Z1 = X1 ∥ K ∈ {0, 1}192 Z1 = X1 ∥ K ∈ {0, 1}192

Zi = Xi ∥ 0128 ∈ {0, 1}192 Zi = Xi ∥ 0128 ∈ {0, 1}192

Zl−1 = Xl−1 ∥ K ∈ {0, 1}192 Zl−1 = X l−1 ∥ K ∈ {0, 1}192

we obtain the following presentation of (Pa, P a) as PS-paths:

P =Z0|Y0 → · · · → Sl−2|Zl−2|Yl−2 → Sl−1|Zl−1|Yl−1 → Sl

P =Z0|Y 0 → · · · → Sl−2|Zl−2|Y l−2 → Sl−1|Zl−1|Y l−1 → Sl .

Visualization for this is provided in Fig. 10. As we neither change (Yl−1, Y l−1) nor any of
the edges, the paths (P, P) form a pair of problematic PS-paths. Thus, we have shown
that PPa implies PP, hence Pr[PPa] ≤ Pr[PP]. This allows us to focus on the plain sponge
setting for the rest of the proof. Applying Lemma 4 for n = 320, c⋆ = 64, and c = 128,
then yields the following bound for finding a pair of problematic plain sponge paths

Pr[PP] ≤ q

263 + q(q − 1)
2128 .

In total, we have shown

AdvCMT
Ascon(A) ≤ AdvTagColl

Ascon (A)
≤ Pr[CPa ∧ ¬PPa] + Pr[PPa]

≤ 1− exp
(
−q(q − 1)

2128

)
+ q

263 + q(q − 1)
2128 ,

which finishes the proof.

Similar Results. Similar to Ascon, we can show committing security for Isap (cf. Ap-
pendix B.5) and Schwaemm (cf. Appendix B.6). For Isap, the overall idea is similar to
the one used in the Ascon proof. While Isap’s large IV allows a direct application of
Theorem 9, extra care is necessary to handle its re-keying mechanism. For Schwaemm,
we consider a slightly modified version SchwaemmIV, where we introduce a fixed IV in the
initial state as Ascon and Isap have. The proof then makes use of the indifferentiability
of (the plain sponge version) of SchwaemmIV from a random function.

4 Zero-Padding the NIST Finalists
In this section we consider the zero-padding approach for the NIST finalists, which is
described in Section 4.1. In Section 4.2, we refine the class of CpP schemes and show
for a subclass—containing Photon-Beetle and Xoodyak—that CMTK attacks reduce
to finding key collisions in the underlying function EncC. In Section 4.3, we show that
zp-Elephant does not achieve CMTK if the number of padded zeros is less or equal to
the block-size of Elephant. In Section 4.4, we show that zp-Isap can be attacked with
about 2 τ

2 queries regardless of the number of padded zeros.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 211

ρ ρ ρ ρ ρ

. . .

. . .

. . .

. . .

K ∥ N

IV

A1 Aα M1 Mµ

K ∥ 0∗ K ∥ 0∗

256
/

64
/

64
/

64
/

64
/

64
/

256
/

256
/

256
/

256
/

128
/

ρ ρ ρ ρ ρ

. . .

. . .

. . .

. . .

K ∥ N

0∗ ∥ IV

A1 ∥ K Aα ∥ 0∗ M1 ∥ 0∗ Mµ ∥ K

256
/

64
/

192
/

192
/

192
/

192
/

128
/

128
/

128
/

128
/

128
/

Figure 10: Illustration of a proof step for Ascon (Theorem 4). Ascon is represented as
a plain sponge with a larger rate.

4.1 Motivation and Description of the Zero-Padding Approach
As discussed in Section 2, there are several transformations that turn arbitrary AE schemes
into committing AE schemes but these might not work in the context of the NIST LWC
finalists. A much simpler and less invasive method is the so-called zero-padding suggested
by Albertini et al. [ADG+22]. Here, a number of zeros is prepended to the message before
encrypting it, i.e.,

zp-Ae.Enc(K, N, A, M) := Ae.Enc(K, N, A, 0z ∥M) .

Decryption uses the decryption algorithm of the AE scheme and additionally checks
whether the resulting message has z leading zeros. If it does, the zeros are discarded and
the message is returned, otherwise, the ciphertext is rejected and ⊥ is outputted. For
any scheme Ae, we write its corresponding zero-padding scheme with a prefix zp-, i.e.,
zp-Ae; the number of zeros that are padded is denoted by z. Zero-padding is particularly
interesting as it does not require any changes to the scheme: prepending zeros to the
message and verifying that a decrypted message has leading zeros can be done outside of
the AE scheme.

Albertini et al. [ADG+22] suggested zero-padding as a method to obtain CMTK security
and Menda et al. [MLGR23] showed that in general it does not achieve CMT security as
CMT⋆

A attacks are still possible. Since all our attacks are also CMT⋆
A attacks—or can be

easily modified to be—we cannot achieve CMT security via the zero-padding. Nonetheless,
zero-padding as a method to obtain CMTK security is still interesting, as the latter seems
to be the more relevant notion for practical attacks [ADG+22,DGRW18,LGR21].

This raises the question whether the broken NIST LWC finalists can be patched by
zero-padding to achieve CMTK security. We provide several negative results for this:
The schemes zp-Photon-Beetle and zp-Xoodyak remain insecure, irrespectively of the
value of z, while zp-Elephant is vulnerable if z ≤ n.

Besides achieving CMTK security, Naito et al. [NSS23] showed that zero-padding can
increase CMT security (up to certain level that is) for Ascon. More precisely, they show
that padding zeros can compensate for smaller tags. This raises the question whether
it also improves the security of other schemes. We provide yet another negative result,
showing that Isap does not benefit from zero-padding regarding its CMT security.

212 Committing AE from Sponges

Game KeyColl
1 : (K, N, A), (K, N, A)← A()
2 : if K = K

3 : return 0
4 : S ← EncC(K, N, A)
5 : S ← EncC(K, N, A)
6 : return (S = S)

Figure 11: Security game KeyColl for CpP schemes.

4.2 Zero-Padding and Context-Pre-Processing Schemes
In Section 2, we introduced CpP schemes and argued that most of the NIST finalists fall
into this category. Recall that CpP schemes first process the context (K, N, A) via EncC

and afterwards process the result together with the message (and optionally the key K
and nonce N) via EncM yielding the ciphertext. The classification of CpP schemes can
be refined further, depending on whether EncM takes the key K and nonce N as input.
We call schemes where EncM solely takes the output of EncC and the message M as
input full-CpP schemes. Out of the NIST LWC finalists, Photon-Beetle and Xoodyak
are full-CpP schemes, whereas for the others the key K is also input to EncM (and for
Romulus additionally also the nonce N).20 For CpP schemes, we define a game KeyColl,
which asks the adversary to find a key collision for EncC, i.e., two contexts that differ (at
least) in the keys but result in the same output of EncC.

Definition 3. Let Ae be a CpP scheme, with encryption composed of EncC and EncM,
and let the game KeyColl be defined as in Fig. 11. For any adversary A, its KeyColl
advantage is defined as

AdvKeyColl
EncC

(A) := Pr[KeyColl(A)→ 1] .

For full-CpP schemes, key committing security can be lower bounded by finding a
key collision for the pre-processing component EncC. Any key collision attack against
EncC translates to a key committing attack against the AE scheme—even when applying
the zero-padding, regardless of how many zeroes are prepended to the message. This is
formally stated in the theorem below, which is proven in Appendix C.5.

Theorem 5. Let Ae be a full-CpP scheme, where encryption is decomposed into EncC

and EncM. Then, for any adversary A against EncC, there exists an adversary B against
zp-Ae such that

AdvCMTK
zp-Ae (B) ≥ AdvKeyColl

EncC
(A) .

Having established Theorem 5 we show that Photon-Beetle and Xoodyak both
allow for key collision attacks against the function EncC as stated in the following theorem.

Theorem 6. Let Ae ∈ {Photon-Beetle, Xoodyak} with underlying components EncC

and EncM. Let further ρ be modeled as an ideal permutation. Then there exists an
adversary A, making q queries to ρ, such that

AdvKeyColl
EncC

(A) ≥ 1
2 .

For Photon-Beetle, we have q = α + α. For Xoodyak, we have q = 217 + 1.
20There is no scheme for which the nonce is input to EncM while the key is not.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 213

Proof. The proof follows from the proofs of Theorem 14 (Photon-Beetle) and Theo-
rem 15 (Xoodyak).

In combination, the above two theorems show that neither Photon-Beetle nor
Xoodyak are CMTK secure even when using the zero-padding approach.

4.3 Zero-Padding and Elephant
The following theorem shows that Elephant with zero-padding does not achieve CMTK
security provided that the number of padded zeros is smaller than the block size of
Elephant. The proof can be found in Appendix C.6.

Theorem 7. Consider Elephant which is illustrated and described in Fig. 18 and Fig. 19,
respectively. Let the tweakable block-cipher TEM be modeled as an ideal tweakable cipher
Ẽ and let z ≤ n. There exists an adversary A, making q queries to Ẽ, such that

AdvCMTK
zp-Elephant(A) = 1 ,

where q = 2µ + 2γ + α + α. Here, µ is the number of message blocks while computing
EncM (note that the block length is based on 0z ∥M and not just M) and γ is the number
of ciphertext blocks while computing EncT. Furthermore, α and α are the number of
associated data blocks for the two tuples that A outputs.

Theorem 7 shows that zero-padding is pointless for Elephant if the number of
prepended zeros is less than or equal to the block size (160/176/200 for the three parameter
sets Jumbo/Dumbo/Delirium). To ensure a valid zero-padding for both tuples, the
adversary needs to find (K, N) and (K, N) such that Ẽ(K, (0, 1), N) = Ẽ(K, (0, 1), N)
holds, which is trivial as Ẽ is an ideal block-cipher for a fixed tweak—in this case (0, 1).
The attack, however, does not apply anymore if the zero-padding affects more than one
block. Assume that z = 2n, then A needs to find (K, N) and (K, N) such that both
Ẽ(K, (0, 1), N) = Ẽ(K, (0, 1), N) and Ẽ(K, (0, 2), N) = Ẽ(K, (0, 2), N). By the same means
as above, one can find (K, N) and (K, N) such that any one of the two equations holds
but not necessarily both of them simultaneously. More generally, for z = n + x, the
probability is 1

2x , i.e., the security increases with the number of padded zeros but only if
the zero-padding exceeds the first block.

4.4 Zero-Padding and Isap
The following theorem (proven in detail in Appendix C.7) shows that Isap does not benefit
from the zero-padding approach to increase its committing security. This is in sharp
contrast to Ascon, for which Naito et al. [NSS23] showed that zero-padding indeed affects
the committing security positively.

Theorem 8. Consider Isap which is illustrated and described in Fig. 30 and Fig. 31,
respectively. Let ρB and ρK be modeled by an ideal permutation ρ1. Let further ρH and ρE

be modeled by ideal permutations ρ2 and ρ3, respectively. Then there exists an adversary
A, making q1, q2, and q3 queries to ρ1, ρ2, and ρ3, respectively, such that

AdvCMT
zp-Isap(A) ≥ 1

2 ,

where q1 = (2 τ
2 +1 + 1)(κ + 1) + ν, q2 = (2 τ

2 +1 + 1)(α + γ + 2), and q3 = µ.

214 Committing AE from Sponges

5 Conclusion
Out of the nine considered NIST finalists, we have shown that six do not achieve committing
security while the remaining three do. For the former, we gave concrete attacks, while
the others are backed up by formal security proofs. From the analysis, we identified three
criteria that are related to committing security: (I) requires a tag length of at least 128
bits, (II) requires 128 bits of the state to be unaffected by the inputs, and (III) requires
the initial state (for sponge-based AE schemes) to have 64 bits not affected by the inputs.
We showed that the absence of these criteria often yields CMT attacks.

Overall, our analysis reveals that sponge constructions built on top of large permutations
are favorable for committing security, as having 128 bits unaffected by the inputs (II) is
then more easily achievable. Note that for sponges this should also hold for the initial
state (III). Constructions built from block-ciphers often fail to achieve (II), as the entire
state typically consists only of 128 bits—though the NIST workshop on accordion cipher
modes [NIST24] also considers block-ciphers with 256-bit states which could solve the
issue. On the other hand, a tag of at least 128 bits (I) is typically not a problem and can
also be achieved by block-ciphers and permutations with smaller state sizes.

Finally, we show that for several of the NIST finalists, the problems that lead to
committing attacks persist even when deploying the zero-padding method. Furthermore,
we show that the interesting observation from [NSS23], i.e., zero-padding improves the
committing security of Ascon, does not apply to Isap. Overall, this shows that the benefit
of the zero-padding is rather restricted.

Acknowledgments
Work of Juliane Krämer was supported by the German Research Foundation (DFG) – SFB
1119 – 236615297. Patrick Struck acknowledges funding by the Bavarian State Ministry of
Science and the Arts in the framework of the bidt Graduate Center for Postdocs (while
working at Universität Regensburg) and the Hector Foundation II. Work of Maximiliane
Weishäupl was funded by the German Federal Ministry of Education and Research (BMBF)
under the project Quant-ID (16KISQ111).

References
[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In

Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 480–497.
Springer, Heidelberg, February 2010.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and
Sophie Schmieg. How to abuse and fix authenticated encryption without key
commitment. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX
Security 2022, pages 3291–3308. USENIX Association, August 2022.

[BBC+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang.
Lightweight AEAD and hashing using the Sparkle permutation family. IACR
Trans. Symm. Cryptol., 2020(S1):208–261, 2020.

[BBdS+21] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang, Amir Moradi,
and Aein Rezaei Shahmirzadi. Schwaemm and Esch. Technical report,
National Institute of Standards and Technology, 2021. Available at https:
//csrc.nist.gov/projects/lightweight-cryptography/finalists.

https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 215

[BCD+21] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. PHOTON-Beetle. Technical report, Na-
tional Institute of Standards and Technology, 2021. Available at https:
//csrc.nist.gov/projects/lightweight-cryptography/finalists.

[BCDM20] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Dumbo,
Jumbo, and Delirium: Parallel authenticated encryption for the lightweight
circus. IACR Trans. Symm. Cryptol., 2020(S1):5–30, 2020.

[BCDM21] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Men-
nink. Elephant. Technical report, National Institute of Standards
and Technology, 2021. Available at https://csrc.nist.gov/projects/
lightweight-cryptography/finalists.

[BCI+21] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB. Technical report, National Institute of Standards
and Technology, 2021. Available at https://csrc.nist.gov/projects/
lightweight-cryptography/finalists.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Keyak v2. Technical report, Submission to the CAESAR Com-
petition, 2016. Available at https://keccak.team/files/Keyakv2-doc2.2.
pdf.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel P. Smart, editor, EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, Heidelberg,
April 2008.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT Hash Workshop, 2007.

[Ber14] Daniel J. Bernstein. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness. https://competitions.cr.yp.to/
caesar.html, 2014.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing au-
thenticated encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 845–875. Springer,
Heidelberg, May / June 2022.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, Heidelberg, December 2000.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reach-
ing the limit of lightweight encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 321–345. Springer,
Heidelberg, September 2017.

https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

216 Committing AE from Sponges

[BS23] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography.
2023. Draft 0.6, http://toc.cryptobook.us/.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
TCHES, 2018(2):218–241, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/881.

[CIMN17] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In
Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of
LNCS, pages 277–298. Springer, Heidelberg, September 2017.

[CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen,
and Weizhi Meng, editors, ESORICS 2022, Part II, volume 13555 of LNCS,
pages 275–294. Springer, Heidelberg, September 2022.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – towards side-channel secure authenticated
encryption. IACR Trans. Symm. Cryptol., 2017(1):80–105, 2017.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. IACR
Trans. Symm. Cryptol., 2020(S1):390–416, 2020.

[DEM+21] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP. Techni-
cal report, National Institute of Standards and Technology, 2021. Avail-
able at https://csrc.nist.gov/projects/lightweight-cryptography/
finalists.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon. Technical report, National Institute of Standards
and Technology, 2021. Available at https://csrc.nist.gov/projects/
lightweight-cryptography/finalists.

[DGL23] Orr Dunkelmann, Shibam Ghosh, and Eran Lambooij. Practical related-key
forgery attacks on full-round TinyJAMBU-192/256. In ToSC 2023 (2), 2023.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 155–186. Springer, Heidelberg, August 2018.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. IACR Trans. Symm. Cryptol., 2018(4):1–38,
2018.

[DHP+21] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, Ronny
Van Keer, and Silvia Mella. Xoodyak. Technical report, National Institute
of Standards and Technology, 2021. Available at https://csrc.nist.gov/
projects/lightweight-cryptography/finalists.

[DJS19] Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges resist
leakage: The case of authenticated encryption. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 209–240. Springer, Heidelberg, December 2019.

http://toc.cryptobook.us/
https://tches.iacr.org/index.php/TCHES/article/view/881
https://tches.iacr.org/index.php/TCHES/article/view/881
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 217

[DM19] Christoph Dobraunig and Bart Mennink. Leakage resilience of the du-
plex construction. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 225–255. Springer,
Heidelberg, December 2019.

[DPU+16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. Design strategies for ARX with provable
bounds: Sparx and LAX. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 484–513. Springer,
Heidelberg, December 2016.

[FLPQ13] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia.
Robust encryption, revisited. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 352–368. Springer, Heidelberg,
February / March 2013.

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of symmetric
primitives under incorrect usage of keys. IACR Trans. Symm. Cryptol.,
2017(1):449–473, 2017.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved masking for tweakable blockciphers with applications to authenticated
encryption. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 263–293. Springer, Heidel-
berg, May 2016.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family
of lightweight hash functions. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 222–239. Springer, Heidelberg, August 2011.

[HJM+21] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, Hirotaka
Yoshida, and Alexander Maximov. Grain-128AEAD. Technical report, Na-
tional Institute of Standards and Technology, 2021. Available at https:
//csrc.nist.gov/projects/lightweight-cryptography/finalists.

[IKM+21] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin, and
Chun Guo. Romulus. Technical report, National Institute of Standards
and Technology, 2021. Available at https://csrc.nist.gov/projects/
lightweight-cryptography/finalists.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The Romulus and Remus families of lightweight AEAD
algorithms. IACR Trans. Symm. Cryptol., 2020(1):43–120, 2020.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages
85–104. Springer, Heidelberg, December 2014.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021,
pages 195–212. USENIX Association, August 2021.

[LM24] Charlotte Lefevre and Bart Mennink. Generic security of the Ascon mode:
On the power of key blinding. In SAC 2024, 2024.

https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

218 Committing AE from Sponges

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46.
Springer, Heidelberg, August 2002.

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
discovery and commitment attacks - how to break CCM, EAX, SIV, and more.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part IV,
volume 14007 of LNCS, pages 379–407. Springer, Heidelberg, April 2023.

[NIST15] National Institute of Standards and Technology. Lightweight cryp-
tography standardization process. https://csrc.nist.gov/projects/
lightweight-cryptography, 2015.

[NIST23] National Institute of Standards and Technology. The third NIST workshop on
block cipher modes of operation 2023. https://csrc.nist.gov/projects/
lightweight-cryptography, 2023. Accessed: 2024-02-23.

[NIST24] National Institute of Standards and Technology. NIST workshop on the require-
ments for an accordion cipher mode 2024. https://csrc.nist.gov/Events/
2024/accordion-cipher-mode-workshop-2024, 2024. Accessed: 2024-04-
04.

[NO14] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis
of PHOTON. In Michel Abdalla and Roberto De Prisco, editors, SCN 14,
volume 8642 of LNCS, pages 340–357. Springer, Heidelberg, September 2014.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering generic composition. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274. Springer,
Heidelberg, May 2014.

[NSS23] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Commiting security of
Ascon: Cryptanalysis on primitive and proof on mode. In ToSC 2023 (4),
2023.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018.

[SW24] Patrick Struck and Maximiliane Weishäupl. Constructing committing and
leakage-resilient authenticated encryption. In ToSC 2024 (1), 2024.

[TMC+23] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Lawrence E.
Bassham, Jinkeon Kang, Noah D. Waller, John M. Kelsey, and Deukjo
Hong. Status report on the final round of the NIST lightweight cryptography
standardization process. https://nvlpubs.nist.gov/nistpubs/ir/2023/
NIST.IR.8454.pdf, 2023.

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding - applications to
SSL, IPSEC, WTLS... In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 534–546. Springer, Heidelberg, April / May
2002.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, Heidelberg,
August 2002.

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/Events/2024/accordion-cipher-mode-workshop-2024
https://csrc.nist.gov/Events/2024/accordion-cipher-mode-workshop-2024
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 219

[WH16] Hongjun Wu and Tao Huang. The JAMBU lightweight authentication
encryption mode (v2.1). Technical report, Submission to the CAESAR
Competition, 2016. Available at https://competitions.cr.yp.to/round3/
jambuv21.pdf.

[WH21] Hongjun Wu and Tao Huang. TinyJambu. Technical report, National Institute
of Standards and Technology, 2021. Available at https://csrc.nist.gov/
projects/lightweight-cryptography/finalists.

A Additional Preliminaries
In Appendix A.1, we give additional details about the NIST LWC finalists and in Ap-
pendix A.2 we describe the used paddings and define more security notions. We give some
background on (tweakable) block-ciphers and sponges in Appendix A.3 and Appendix A.4,
respectively. Finally, in Appendix A.5, we provide some results that are relevant for our
attacks and proofs.

A.1 The NIST LWC Finalists
We provide two tables and a figure with additional information about the NIST LWC
finalists regarding their similarities and differences. Table 2 gives an overview and Table 3
describes the parameter sets. Fig. 12 shows the state-update-function for the different
schemes.

Table 2: Overview of the NIST LWC finalists regarding similarities and differences in their
design. Here, CpP stands for Context-pre-Processing and EtM for Encrypt-then-MAC.

Scheme Class of
scheme

Underlying
Primitive Sponge

State-
update-
function

Romulus CpP Block-ciphera No Yes
Elephant EtM Permutation No No

Gift-Cofb CpP Block-cipher No Yes
Photon-Beetle CpP Permutation Yes Yes

TinyJambu CpP Block-cipher Yes No
Xoodyak CpP Permutation Yes No

Ascon CpP Permutation Yes No
Isap EtM Permutation Yes No

Schwaemm CpP Permutation Yes Yes
a Note that Romulus actually uses a tweakable block-cipher for its underlying primitive.

A.2 Paddings and Security Notions
The authenticated encryption schemes considered in this work, use common paddings
which we recall below. The one-zero padding pad10∗(·, r), appends a 1, followed by 0s
until the length is a multiple of r. Simply padding with 0s to a length of a multiple of r is
denoted by pad0∗(·, r). By padL(·, r), we denote the padding which appends 0, followed by
appending the length of the input such that the overall length is a multiple of r.

Below we define collision resistance of a hash function.

https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

220 Committing AE from Sponges

Table 3: Parameters of the NIST LWC finalists. Values for rate and capacity are only
given for the sponge-based schemes. For Isap, the parameters are for the version using
Keccak-P, the version using Ascon-P has n = 320 and r = 64. Note that for Xoodyak
and Isap, components of the schemes use rates deviating from the ones given above: The
EncC component in Xoodyak is a full-state sponge and in Isap’s re-keying mechanism a
minimal rate of 1 is used.

Scheme Key κ Nonce ν Tag τ State n Rate r Capacity c

Romulus 128 128 128 128 - -
Elephant 128 96 64 160 - -

Gift-Cofb 128 128 128 128 - -
Photon-Beetle 128 128 128 256 128 128

TinyJambu 128 96 64 128 32 96
Xoodyak 128 128 128 384 192 192

Ascon 128 128 128 320 64 256
Isap 128 128 128 400 144 256

Schwaemm 128 256 128 384 256 128

ξ

S Y =

S ⊕ I

G̃(S)⊕ I

S ⊕ I

FeistelSwap(S)⊕ I

I O =

G(S)⊕ I

S ⊕ I

Shuffle(S)⊕ I

S ⊕ I

(Romulus)
(Gift-Cofb)
(Photon-Beetle)
(Schwaemm)
(Romulus)
(Gift-Cofb)
(Photon-Beetle)
(Schwaemm)

Figure 12: Illustration of the state-update-function ξ for the different schemes. The
components G, G̃, Shuffle, and FeistelSwap—if relevant for our results—are described along
with the schemes in the respective sections.

Definition 4. Let H : {0, 1}∗ → {0, 1}w be a hash function outputting bit strings of
length w. For any adversary A, its CR advantage is defined as

AdvCR
H (A) := Pr[H(X1) = H(X2) ∧X1 ̸= X2 | (X1, X2)← A()] .

Menda et al. [MLGR23] defined several variants of committing security. These variants
require different parts of the contexts to disagree (and sometimes also others to agree).
Below we recall their security notions.21

Definition 5. Let Ae = (Enc, Dec) be an authenticated encryption scheme and the
games CMTX and CMT⋆

X for X ∈ {K, N, A} be defined as in Fig. 1. For any adversary A,
its CMTX and CMT⋆

X advantages are defined as

AdvCMTX
Ae (A) := Pr[CMTX(A)→ 1] and AdvCMT⋆

X
Ae (A) := Pr[CMT⋆

X(A)→ 1] ,

respectively.

Furthermore, Menda et al. [MLGR23] introduce so-called context-discovery notions.
In this work, we are only interested in the notion CDY⋆

A. Roughly speaking, this notion
provides an adversary with a ciphertext C and partial context (consisting of the key K

21Note that CMTK originates from [BH22].

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 221

Game CMTK

1 : (K, N, A, M), (K, N, A, M)← A()
2 : if K = K

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Game CMT⋆
K

1 : ((K, K), N, A, (M, M))← A()
2 : if K = K

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Game CMTN

1 : (K, N, A, M), (K, N, A, M)← A()
2 : if N = N

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Game CMT⋆
N

1 : (K, (N, N), A, (M, M))← A()
2 : if N = N

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Game CMTA

1 : (K, N, A, M), (K, N, A, M)← A()
2 : if A = A

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Game CMT⋆
A

1 : (K, N, (A, A), (M, M))← A()
2 : if A = A

3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return ((C, T) = (C, T))

Figure 13: Security games CMTK, CMTN, CMTA, CMT⋆
K, CMT⋆

N, and CMT⋆
A for au-

thenticated encryption schemes. Here, ((K, K), N, A, (M, M)) is an abbreviation for
(K, N, A, M), (K, N, A, M), likewise used for the other context components.

and nonce N used to generate the ciphertext), and the adversary is challenged to find
associated data A which validly decrypts the ciphertext. Below we recall this security
notion.

Definition 6. Let Ae = (Enc, Dec) be an authenticated encryption scheme and the
game CDY⋆

A be defined as in Fig. 14. For any adversary A, its CDY⋆
A advantage is defined

as

AdvCDY⋆
A

Ae (A) := Pr[CDY⋆
A(A)→ 1] .

Next, we define the advantage of finding colliding tags. At its core, this is a weakened
version of committing security as the ciphertexts are not required to agree. We use this to
bound the committing security of Ascon and Schwaemm.

Definition 7. Let Ae = (Enc, Dec) be an authenticated encryption scheme and the
game TagColl be defined as in Fig. 15. For any adversary A, its TagColl advantage is
defined as

AdvTagColl
Ae (A) := Pr[TagColl(A)→ 1] .

222 Committing AE from Sponges

Game CDY⋆
A

1 : (K, N, (C, T))←$K ×N × C
2 : A← A(K, N, (C, T))
3 : M ← Dec(K, N, A, (C, T))
4 : if M = ⊥
5 : return 0
6 : return 1

Figure 14: Security game CDY⋆
A for authenticated encryption schemes.

Game TagColl
1 : (K, N, A, M), (K, N, A, M)← A()
2 : if (K, N, A) = (K, N, A)
3 : return 0
4 : (C, T)← Enc(K, N, A, M)
5 : (C, T)← Enc(K, N, A, M)
6 : return (T = T)

Figure 15: Security game TagColl for authenticated encryption schemes used in the proof
of Theorem 4.

A.3 (Tweakable) Block-Ciphers
A block-cipher BC : {0, 1}κ × {0, 1}n → {0, 1}n takes as input a key K of length κ and a
message M of length n, and outputs a ciphertext C of the same length as the message.
For every K ∈ {0, 1}κ, BC(K, ·) is a permutation over {0, 1}n. A tweakable block-
cipher [LRW02] TBC : {0, 1}κ × T × {0, 1}n → {0, 1}n takes as input a key K of length
κ, a tweak W (from some set of tweaks T), and a message M of length n, and outputs
a ciphertext C of the same length as the message. For every pair (K, W) ∈ {0, 1}κ × T ,
TBC(K, W, ·) is a permutation over {0, 1}n. We also use TBCW

K (·) as an alternative
notation for TBC(K, W, ·).

For our results, we model the block-ciphers BC and tweakable block-ciphers TBC by
an ideal cipher E and ideal tweakable cipher Ẽ, respectively.

A.4 Sponges
Sponges [BDPVA07] are a versatile tool for cryptographic primitives. Rather than just
being relevant for cryptographic hash functions—as was their initial design goal—they
turned out to be more powerful as one can construct numerous cryptographic primitives
from sponges.

The underlying component of a sponge is a permutation ρ : {0, 1}n → {0, 1}n. Here, n
is the size of the sponge state. The sponge operates in a round-wise fashion, where each
round it absorbs a part of the input and applies ρ. The rate r describes how many bits of
the input can be absorbed in each round by XORing them to the first r bits of the sponge
state. The higher the rate the faster the sponge as fewer rounds, hence fewer invocations
of ρ, are required to absorb the input. The part of the sponge state that is not affected
by the input absorption is called the inner state and its size is denoted by the capacity c,
thus we have r + c = n. The capacity is related to the security of the sponge, the higher
the capacity the better the security of the sponge. For several of the NIST LWC finalists,
the capacity of the initial state differs from the one in the rest of the sponge, which is why

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 223

BCK TBC(·)
KM MC C

W

Figure 16: Block-cipher (left) and tweakable block-cipher (right). For tweakable block-
ciphers, the black bar indicates that the incoming arrow (W) is the tweak.

ρ ρ ρ ρ ρ0n

X1 X2 X3 X4 Y1 Y2

r
/

r
/

r
/

r
/

r
/

≤ r
/

c
/

c
/

c
/

c
/

c
/

absorb squeeze

Figure 17: Illustration of a plain sponge construction with four rounds of absorbing and
two rounds of squeezing.

we introduce c⋆ as a notation for this initial capacity.
We refer to sponges of the form described above by plain sponges and provide an

illustration in Fig. 17. It was shown that—especially in the context of AE schemes—one
can also deploy full-state sponges and duplex sponges. The former XORs the input to
the entire state, i.e., r = n and c = 0. The latter absorbs and squeezes in each round, in
contrast to the plain sponge which squeezes only after the absorption is finished. Xoodyak
uses a full-state sponge, while a duplex sponge is used, for instance, by Ascon.

Below we recall two results for the plain sponge construction that we will use later:
First, a bound on the collision resistance of a simple sponge-based hash function and,
second, the indifferentiability of sponges from a random function.
Theorem 9 ([BS23, Theorem 8.6]). Let H be a hash function obtained from a permutation
ρ : {0, 1}n → {0, 1}n, with capacity c, rate r (so n = r + c), and output length w ≤ r. For
every adversary A, if the number of ideal permutation queries plus the number of r-bit
blocks in the output of A is bounded by q, it holds that

AdvCR
H (A) ≤ q(q − 1)

2w
+ q(q + 1)

2c
.

Theorem 10 ([BDPV08, Theorem 2]). Let H be a (padded) sponge construction obtained
from a permutation ρ : {0, 1}n → {0, 1}n, with capacity c and rate r (so n = r + c). Then,
for any adversary A, making significantly less than 2c queries to ρ, H is indistinguishable
from a random oracle F, except with probability at most (1−2−256)q2+(1+2−256)q

2129 .

An improved indifferentiability bound is given by Naito et al. [NO14]. This results
allow for a smaller capacity in both the initial state of the sponge (c⋆ = c

2 instead of c⋆ = c)
and the squeezing phase (c⋆ = c

2 + log2 c instead of c⋆ = c) while maintaining the security
bound. Using this improved indifferentiability one can also obtain committing security
of Ascon (in contrast to our analysis which uses collision resistance of plain sponges).
For Isap and (our modified version of) Schwaemm, the older indifferentiability bound is
sufficient as they both feature a larger IV.

A.5 Existing Results
The theorem below gives both upper and lower bounds on finding collisions for independent
random variables.

224 Committing AE from Sponges

Theorem 11 ([BS23, Theorem B.1]). Let M be a set of size n and X1, . . . , Xk be k
independent random variables uniform in M. Let C be the event that for some distinct
i, j ∈ {1, . . . , k} we have that Xi = Xj. Then

Pr[C] ≥ 1− exp
(
−k(k − 1)

2n

)
≥ min

{
−k(k − 1)

4n
, 0.63

}
and

Pr[C] ≤ 1− exp
(
−k(k − 1)

n

)
when k <

n

2 .

We use the formulation of the birthday problem presented in [Wag02], but provide a
more formal description using Theorem 11.

Lemma 5. Consider two lists L1, L2 of elements drawn uniformly and independently at
random from {0, 1}τ . We denote the size of L1 and L2 by l1 and l2, respectively, and define
l = l1 + l2. Then one finds xk ∈ L1 and xj ∈ L2 such that xk ⊕ xj = 0 with a probability
of at least (

1− exp
(
−l(l − 1)

2τ+1

))
· 2 l1l2

l2 − l
.

Proof. Consider the concatenation of the two lists L = L1 ∥ L2 and write x1, . . . , xl for its
elements. Denote by C the event that xk = xj holds for some k ̸= j. Since the xi are drawn
uniformly and independently, Theorem 11 yields the bound Pr[C] ≥ 1 − exp

(
−l(l−1)

2τ+1

)
.

However, this probability also counts internal collisions of L1 and L2, respectively. For two
elements of L, the probability that they are not both from either L1 or L2 is l1

l
l2

l−1 + l2
l

l1
l−1 =

2 l1l2
l2−l . Taking this into account, the probability that xk = xj holds for some xk ∈ L1 and
xj ∈ L2 is thus bounded above by

(
1− exp

(
−l(l−1)

2τ+1

))
· 2 l1l2

l2−l .

The following lemma contains two technical results needed for the committing security
proof of Ascon (Theorem 4). While the computations are not hard, we give them here to
provide a complete presentation.

Lemma 6. Let n, c, l ∈ N such that c, l ≤ n and IV ∈ {0, 1}l. Let further ρ be a random
permutation over {0, 1}n and A be an adversary making queries to ρ. Consider the
following events:

1. Event Et (target hitting query):
A makes a query Y to ρ such that ⌊ρ(Y)⌋l = IV or A makes a query S to ρ−1 such
that

⌊
ρ−1(S)

⌋
l

= IV.

2. Event Ec (colliding queries):
A makes queries Y ̸= Y to ρ such that ⌊ρ(Y)⌋c =

⌊
ρ(Y)

⌋
c

or A makes queries Y to
ρ and S to ρ−1 such that ⌊ρ(Y)⌋c =

⌊
ρ−1(S)

⌋
c
.

If A makes q ≤ 2n−1 queries, then

Pr[Et] ≤
q

2l−1 and Pr[Ec] ≤
q(q − 1)

2c
.

Proof. We start with the bound for Et. Let Xi be the event that A triggers event Et with
its i-t query. It holds that

Pr[Et] ≤
q∑

i=1
Pr[Xi] =

q∑
i=1

2n−l

2n − i + 1 ≤
2n−lq

2n − q
≤ 2n−lq

2n−1 = q

2l−1 ,

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 225

where q ≤ 2n−1 is used for the last inequality. Next, we bound event Ec. Let Xij be the
event that the j-th query by A forms a collision with the i-th query. Then it holds that

Pr[Ec] ≤
q∑

j=i

j−1∑
i=1

Pr[Xij] ≤
q∑

j=1

(j − 1)2n−c

2n − j + 1 ≤ 2n−c

(
q(q − 1)

2 (2n − q)

)
,

and using q ≤ 2n−1 again, we obtain

Pr[Ec] ≤ 2n−c

(
q(q − 1)

2n

)
= q(q − 1)

2c
,

which finishes the proof.

B Additional Committing Security Analysis
Here, we analyze the CMT security of the six remaining NIST LWC finalists. For
Elephant (cf. Appendix B.1), Gift-Cofb (cf. Appendix B.2), and Photon-Beetle
(cf. Appendix B.3), we give—similar to Romulus (cf. Section 3.1)—attacks that break
committing security with essentially no cost. For Xoodyak (cf. Appendix B.4), we give
a committing attack requiring about 217 queries using a birthday attack as done for
TinyJambu (cf. Section 3.2). For Isap (cf. Appendix B.5) and Schwaemm (cf. Ap-
pendix B.6), we give formal proofs showing that the schemes achieve committing security
of about 64-bit, similar to Ascon (cf. Section 3.3).

B.1 Elephant
The AE scheme Elephant [BCDM21,BCDM20] relies on a cryptographic permutation
which gets masked using linear feedback shift registers similar to the masked Even-Mansour
construction [GJMN16]. The security of the Elephant-mode follows from the security of
the masked Even-Mansour construction, which is shown to be indistinguishable from an
ideal tweakable block-cipher [BCDM21]. As our results rely on the mode, we choose to
present the scheme in terms of such an tweakable block-cipher, which we denote by TEM
for tweakable Even-Mansour.

B.1.1 Description of Elephant

The pseudocode of Elephant is given in Fig. 19 and further illustration is provided in
Fig. 18. Elephant follows the Encrypt-then-MAC paradigm, i.e., it first encrypts the
message C ← EncM(K, N, M) and afterwards computes the tag T ← EncT(K, N, A, C).
Note that in EncT the nonce and associated data are padded together, i.e., the first
associated data block contains the nonce and the first bits of the associated data. This
is in contrast to all other schemes, where the associated data blocks do not contain the
nonce. Furthermore, note that the underlying encryption is an involution, i.e., to decrypt
a ciphertext, we simply compute EncM(K, N, C).

B.1.2 Committing Attack against Elephant

Since Elephant follows the EtM-paradigm, we only need to focus on the underlying
function EncT. If we can find two contexts that verify a ciphertext-tag pair, applying
EncM to the ciphertext and each context, gives back two valid messages. The following
attack, which is the simplest one in this work, shows that Elephant [BCDM21] does not
achieve committing security.

226 Committing AE from Sponges

TEM(·)
K

. . . TEM(·)
K

TEM(·)
K

. . . TEM(·)
K TEM(·)

K
. . . TEM(·)

K

TEM(·)
K

N N

M1 Mµ

C1 Cµ

C1 CγA1 A2 Aα

.

T

0, 1 µ−1, 1

1, 0 α−1, 0 0, 2 γ−1, 2

0, 0
S

Y

ρ

X

Y

maski,j
K

i, j

TEM(·)
K

Figure 18: Illustration of Elephant in terms of EncM (top) and EncT (bottom). The
states S and Y , marked in red, are used in our CMT attack.

Theorem 12. Consider Elephant which is illustrated and described in Fig. 18 and
Fig. 19, respectively. Let TEM be modeled as an ideal tweakable cipher Ẽ. Then there
exists an adversary A, making q queries to Ẽ, such that

AdvCMT
Elephant(A) = 1 ,

where q = 2µ + 2γ + α + α. Here, µ is the number of message blocks while computing
EncM and γ is the number of ciphertext blocks while computing EncT.22 Furthermore, α
and α are the number of associated data blocks for the two tuples that A outputs.

Proof. We construct a CMT adversary A against Elephant as shown in Fig. 20. As a
first step it samples a key K, a nonce N , associated data A, and a message M at random
from the respective sets. It computes the ciphertext C ← EncM(K, N, M) and the tag
T ← EncT(K, N, A, C). The ciphertext is parsed into blocks C1, . . . , Cγ

n←− pad10∗(C, n).
Next, the adversary samples a second, different key K ←$ K\{K} and associated data
blocks A2, . . . , Aα ←$ {0, 1}n.23 The adversary then computes the state

S ←
α⊕

i=2
(Ẽ(K, (i− 1, 0), Ai))⊕

γ⊕
i=1

(Ẽ(K, (i− 1, 2), Ci)) ,

shown in Fig. 18. The value Y is computed by querying Ẽ−1 on K, (0, 0), and T (padded
with 0s to length n). Adversary A then computes A1 as the XOR of S and Y . Together with
the other associated data blocks, A computes (N, A)← pad−1

10∗(A1 ∥ . . . ∥ Aα), i.e., removes
the padding. It remains to compute the message M to which the ciphertext C decrypts
under the context (K, N, A). This can easily be achieved by setting M ← EncM(K, N, C).
Finally, A outputs (K, N, A, M), (K, N, A, M). Observe that A wins the game CMT, as
we have

Elephant.Enc(K, N, A, M) = (C, T) = Elephant.Enc(K, N, A, M) .

22Note that µ and γ might not be the same.
23We assume that A chooses the last block to exhibit a valid padding.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 227

Elephant.Enc(K, N, A, M)
1 : C ← EncM(K, N, M)
2 : T ← EncT(K, N, A, C)
3 : return (C, T)

EncM(K, N, M)
4 : M1, . . . , Mµ

n←− pad0∗ (M, n)
5 : for i = 1, . . . , µ

6 : Ci ←Mi ⊕TEM(i−1,1)(K, N)
7 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

8 : return C

EncT(K, N, A, C)
9 : A1, . . . , Aα

n←− pad10∗ (N ∥ A, n)

10 : C1, . . . , Cγ
n←− pad10∗ (C, n)

11 : T ← A1

12 : for i = 2, . . . , α

13 : T ← T ⊕TEM(i−1,0)(K, Ai)
14 : for i = 1, . . . , γ

15 : T ← T ⊕TEM(i−1,2)(K, Ci)

16 : T ← TEM(0,0)(K, T)
17 : return ⌈T ⌉τ

Figure 19: Pseudocode of Elephant [BCDM21] in terms of EncM and EncT.

Elephant adversary A

1 : K, N, A, M ←$K ×N ×A×M
2 : C ← EncM(K, N, M)
3 : T ← EncT(K, N, A, C)
4 : C1, . . . , Cγ

n←− pad10∗ (C, n)
5 : K ←$K \ {K}
6 : A2, . . . , Aα ←$ {0, 1}n

7 : S ← B(C1, . . . , Cγ , A2, . . . , Aα)
8 : Y ← Ẽ−1(K, (0, 0), pad0∗ (T, n))
9 : A1 ← Y ⊕ S

10 : (N, A)← pad−1
10∗ (A1, . . . , Aα)

11 : M ← EncM(K, N, C)
12 : return (K, N, A, M), (K, N, A, M)

B(C1, . . . , Cγ , A2, . . . , Aα)
13 : S ← 0n

14 : for i = 1, . . . , γ

15 : S ← S ⊕ Ẽ−1(K, (i− 1, 2), Ci)
16 : for i = 2, . . . , α

17 : S ← S ⊕ Ẽ−1(K, (i− 1, 0), Ai)
18 : return S

Figure 20: Elephant adversary A from Theorem 12.

As for the queries to Ẽ, A makes µ queries to compute C and α + γ to compute T .
Additionally, A makes µ queries to compute M and α + γ queries to compute S and Y ,
totalling up to q = 2µ + 2γ + α + α queries.

The attack easily extends to CMTK, CMTN, CMTA, and CMT⋆
A attacks. The reasoning

follows the one given for Romulus. For a CMT⋆
A, the attack needs to target a different

associated data block than the first as this one contains the nonce.

B.2 Gift-Cofb
The AE scheme Gift-Cofb uses the Cofb mode [CIMN17] for authenticated encryption
and instantiates the block-cipher using Gift [BPP+17].

B.2.1 Description of Gift-Cofb

The pseudocode of Gift-Cofb is given in Fig. 22 while Fig. 21 provides an illustration
of it. Gift-Cofb follows the CpP-approach, i.e., it first computes S ← EncC(K, N, A)

228 Committing AE from Sponges

BCK BCK BCK BCK

ξ ξ ξ

∆1 ∆α−1 ∆α

A1 A2 Aα

N

S BCK BCK BCK

ξ ξ ξ

∆α+1 ∆α+µ−1 ∆α+µ

M1

C1

M2

C2

Mµ

Cµ

T

S

Y∗S∗

Figure 21: Illustration of Gift-Cofb in terms of EncC (top) and EncM (bottom). The
different indices for ∆ only indicate that the values are different—in the pseudocode the
value ∆ is constantly updated. The states S∗ and Y∗, marked in red, are used in our CMT
attack.

followed by (C, T)← EncM(K, S, M). The scheme features the state-update-function

ξ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, ξ(S, I) = (G̃(S)⊕ I, S ⊕ I)

that is invoked in an alternating manner with the block-cipher. This function makes use
of the following matrix G̃, which gets a bit string of length n, swaps the two halves, and
additionally applies a bit rotation to the (new) second half:

G̃ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 × {0, 1}n/2, (S1, S2) 7→ (S2, S1 ≪ 1) .

In between the state-update-function and the block-cipher, Gift-Cofb applies some
masking by XORing some value ∆ to the state.

B.2.2 Committing Attack Against Gift-Cofb

The AE scheme Gift-Cofb does not achieve CMT security. The scheme is very similar
to Romulus which allows to apply the same attack strategy. However, Gift-Cofb uses
a different state-update-function ξ. It turns out that we cannot always invert ξ—inversion
only works with probability 1

2 . This is the reason, why the advantage depends on the
number of ciphertext blocks.

Theorem 13. Consider Gift-Cofb which is illustrated and described in Fig. 21 and
Fig. 22, respectively. Let BC be modeled as an ideal cipher E. Then there exists an
adversary A, making q queries to E, such that

AdvCMT
Gift-Cofb(A) = 1

2µ
,

where q = 2µ + α + α + 2. Here, µ is the number of message blocks, α is the number of
associated data blocks for the first tuple, and α for the second tuple that A outputs.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 229

Gift-Cofb.Enc(K, N, A, M)
1 : (S, ∆)← EncC(K, N, A)
2 : (C, T)← EncM(K, (S, ∆), M)
3 : return (C, T)

EncM(K, (S, ∆), M)
4 : M1, . . . , Mµ

n←− pad10∗ (M, n)
5 : for i = 1, . . . , µ− 1
6 : ∆← 2∆

7 : (Y, Ci)← ξ(S, Mi)

8 : Y ← Y ⊕ (∆ ∥ 0n/2)
9 : S ← BC(K, Y)

10 : if |M | mod n = 0
11 : ∆← 3∆

12 : if |M | mod n ̸= 0
13 : ∆← 32∆

14 : (Y, Cµ)← ξ(S, Mµ)

15 : Y ← Y ⊕ (∆ ∥ 0n/2)
16 : S ← BC(K, Y)
17 : T ← ⌈S⌉τ
18 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

19 : return (C, T)

EncC(K, N, A)
20 : Y ← N

21 : S ← BC(K, Y)
22 : ∆← ⌈S⌉n/2

23 : A1, . . . , Aα
n←− pad10∗ (A, n)

24 : for i = 1, . . . , α− 1
25 : ∆← 2∆

26 : (Y, ·)← ξ(S, A)

27 : Y ← Y ⊕ (∆ ∥ 0n/2)
28 : S ← BC(K, Y)
29 : if |A| mod n = 0
30 : ∆← 3∆

31 : j ← 1
32 : if |A| mod n ̸= 0
33 : ∆← 32∆

34 : j ← 2
35 : (Y, ·)← ξ(S, Aα)

36 : Y ← Y ⊕ (∆ ∥ 0n/2)
37 : S ← BC(K, Y)
38 : return (S, ∆)

ξ(S, I)
39 : Y ← G̃(S)⊕ I

40 : O ← S ⊕ I

41 : return (Y, O)

Figure 22: Pseudocode of Gift-Cofb [BCI+21] in term of EncC and EncM.

While the advantage depends on µ, we stress that this vlaue is controlled by A. In
particular, choosing a short ciphertext of only one block leads to an attack with success
probability of 1

2 .
For the proof of Theorem 13 we drop the XOR of the masking values. This avoids

some very cumbersome and tedious bookkeeping. Subsequent to the proof, we discuss why
the result also holds if the masking values are used.

Before giving the proof of Theorem 13, we give three lemmas that we will use to
prove it. The first lemma, Lemma 7, shows that there is an algorithm that inverts the
state-update-function of Gift-Cofb for random outputs with probability 1

2 . The second
lemma, Lemma 8, shows that EncC can be inverted, i.e., given an arbitrary key K, a nonce
N , and an output state S, there is an algorithm that outputs associated data A, such that
EncC(K, N, A) = S. The third lemma, Lemma 9, shows that there is an algorithm that
inverts EncM. The latter relies heavily on Lemma 7 which is why the success probability
drops exponentially in the number of ciphertext blocks.

Lemma 7. Let ξ be the state-update-function of Gift-Cofb. Let further Aξ be the
algorithm displayed in Fig. 23. Let C be an arbitrary bit string of length n. Then for

230 Committing AE from Sponges

Y ←$ {0, 1}n, it holds that

Pr[ξ(Aξ(Y, C)) = (Y, C)] = 1
2 .

Proof. We start by describing the algorithm Aξ that is displayed in Fig. 23. We divide
C and Y in two n

2 -sized blocks, denoted by C1, C2 and Y1, Y2, respectively. Further, we
denote the bits of C1 ⊕ Y1 ⊕ C2 ⊕ Y2 by z1, . . . , z n

2
. Then, we randomly sample a bit s1

and set si ← si−1⊕ zi−1 for all i = 2, . . . , n
2 . By S1 we denote the bit string resulting from

concatenating the si’s. Next, we define S2 ← C1 ⊕ Y1 ⊕ S1 and S ← S1 ∥ S2, which will
be the first output of Aξ. Further, we set M1 ← Y1 ⊕ S2 and M2 ← Y2 ⊕ (S1 ≪ 1). The
concatenated bit string M ←M1 ∥M2 is the second output of Aξ, i.e., Aξ(Y, C) = (S, M).

Next, we check that ξ(Aξ(Y, C)) = (Y, C) holds with probability 1
2 . By definition of

the state-update-function, the first component of ξ(Aξ(Y, C)) = ξ(S, M) is given by

G̃(S)⊕M = (S2, S1 ≪ 1)⊕M

= (S2 ⊕M1, (S1 ≪ 1)⊕M2)
= (Y1, Y2) = Y .

The second component of ξ(Aξ(Y, C)) = ξ(S, M) computes as

M ⊕ S = (M1 ⊕ S1, M2 ⊕ S2)
= (Y1 ⊕ S2 ⊕ S1, Y2 ⊕ (S1 ≪ 1)⊕ S2) .

Note that this expression is equal to C if and only if S1 ⊕ (S1 ≪ 1) = C1 ⊕ Y1 ⊕ C2 ⊕ Y2,
which results from solving C1 = Y1 ⊕ S2 ⊕ S1 for S2 and plugging the result into C2 =
Y2 ⊕ (S1 ≪ 1)⊕ S2. Breaking down this equation to the bit-level, yields

(s1, s2, . . . , s n
2

)⊕ (s2, s3, . . . , s n
2

, s1) = (z1, . . . , z n
2

) .

This gives the following equations

s1 ⊕ s2 = z1

s2 ⊕ s3 = z2

...
s n

2 −1 ⊕ s n
2

= z n
2 −1

s n
2
⊕ s1 = z n

2

of which the first n
2 − 1 equations hold by construction of the algorithm Aξ. Finally, we

need to determine in which cases the last equation holds. For this, we replace s n
2

by
s n

2 −1 ⊕ z n
2 −1 which we get from the second to last equation. Then, in turn, we replace

s n
2 −1 with s n

2 −2⊕ z n
2 −2 and continue this process until we get an equation depending only

on the zi’s and s1, namely

z n
2 −1 ⊕ . . . z2 ⊕ z1 ⊕ s1 ⊕ s1 = z n

2
,

which is equivalent to z n
2
⊕ z n

2 −1⊕ . . . z2⊕ z1 = 0. Thus we get ξ(Aξ(Y, C)) = (·, C) if and
only if C1⊕Y1⊕C2⊕Y2 = z1 ∥ . . . ∥ z n

2
contains an even number of 1s. Since Y is chosen

uniformly at random, this is the case with probability 1
2 . This finishes the proof.

Lemma 8. Consider Gift-Cofb as described in Fig. 22. There exists an adversary AC,
making q queries to the ideal cipher E such that for any (K, N, S) ∈ K ×N × {0, 1}n, it
holds that

Pr[EncC(K, N, A) = S | A← AC(K, N, S)] = 1 .

The number of ideal cipher queries by AC is q = α + 1 for α being the number of associated
data blocks that AC outputs.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 231

Proof. We construct the following adversary AC against Gift-Cofb as shown in Fig. 23.
Its input is (K, N, S). First, AC randomly picks associated data blocks A2, . . . , Aα, i.e., all
except the first one.24 Next, AC computes both S∗ and Y∗ (cf. Fig. 21): For the former,
AC computes S∗ ← E(K, N) and for the latter, AC consecutively inverts the ideal cipher E
(starting from the input S) and the state-update-function ξ (by XORing an associated
data block and inverting G̃—note that we merely need to invert G̃ as the output of ξ is
discarded). Finally, AC computes A1 ← S∗ ⊕ Y∗ and outputs A← pad−1

10∗(A1 ∥ . . . ∥ Aα).
By construction, it holds that

EncC(K, N, A) = S .

The number of ideal cipher queries by AC is α + 1.

Lemma 9. Consider Gift-Cofb described in Fig. 22. There exists an adversary AM,
making q queries to the ideal cipher E such that

Pr[EncM(K, N, S, M) = (C, T) | (S, M)← AM(K, N, (C, T))] = 1
2µ

,

holds for any (K, N, (C, T)) ∈ K ×N × C. The number of ideal cipher queries by AM is
q = µ for µ being the number of ciphertext blocks that AM receives as input.

Proof. We construct an adversary AM against Gift-Cofb as shown in Fig. 23. It gets
(K, N, (C, T)) as input. For ease of exposition, we assume that the length of C is a multiple
of the block size n, hence C1, . . . , Cµ

n←− C yields µ full blocks of length n. First, Adversary
AM sets S ← T . Next, AM consecutively inverts the ideal cipher Y ← E−1(K, S) and
computes (S, Mi)← Aξ(Y, Ci). Finally, it sets M ←M1 ∥ . . . ∥Mµ and outputs (S, M).
Provided that Aξ correctly inverts ξ, we obtain

EncM(K, N, S, M) = (C, T) .

By Lemma 7—using Y is uniformly random due to E being an ideal cipher—every inversion
of ξ succeeds with probability 1

2 . Since Aξ is run µ times by AM, we get

Pr[EncM(K, N, S, M) = (C, T) | (S, M)← AM(K, N, (C, T))] = 1
2µ

.

The number of queries to the ideal cipher E by AM is µ.

We are now ready to give the proof of Theorem 13.

Proof (of Theorem 13). We construct A against Gift-Cofb as displayed in Fig. 23. It
starts by sampling a context (K, N, A) together with a message M at random and com-
putes (C, T) ← Gift-Cofb.Enc(K, N, A, M). Next, it samples a fresh key-nonce pair
(K, N), computes (S, M)← AM(K, N, (C, T)), and A← AC(K, N, S). Finally, A outputs
(K, N, A, M), (K, N, A, M).

By Lemma 8 and Lemma 9, we have the following equalities with probability 1
2µ :

Gift-Cofb.Enc(K, N, A, M) = EncM(K, N, EncC(K, N, A), M)
= EncM(K, N, S, M) (Lemma 8)
= (C, T) (Lemma 9)
= Gift-Cofb.Enc(K, N, A, M) .

24We assume that AC picks the blocks such that they exhibit a valid padding according to Gift-Cofb.

232 Committing AE from Sponges

Gift-Cofb adversary A()
1 : (K, N, A, M)←$K ×N ×A×M
2 : (C, T)← Enc(K, N, A, M)
3 : (K, N)←$K ×N
4 : (S, M)← AM(K, N, (C, T))
5 : A← AC(K, N, S)
6 : return (K, N, A, M), (K, N, A, M)

EncC adversary AC(K, N, S)
7 : A2, . . . , Aα ←$ {0, 1}n

8 : S∗ ← E(K, N)
9 : Y ← E−1(K, S)

10 : for i = α, . . . , 2

11 : S ← G̃−1(Y ⊕Ai)
12 : Y ← E−1(K, S)
13 : Y∗ ← Y

14 : A1 ← G̃(S∗)⊕ Y∗

15 : A← A1 ∥ . . . ∥ Aα

16 : return A

EncM adversary AM(K, N, (C, T))
17 : S ← T

18 : for i = µ, . . . , 1
19 : Y ← E−1(K, S)
20 : (S, Mi)← Aξ(Y, Ci)
21 : M ←M1 ∥ . . . ∥Mµ

22 : return (S, M)

Aξ(Y, C)

23 : C1, C2

n
2←− C

24 : Y1, Y2

n
2←− Y

25 : z1, . . . , z n
2

1←− C1 ⊕ Y1 ⊕ C2 ⊕ Y2

26 : s1 ←$ {0, 1}
27 : for i = 2, . . . , n

2 do
28 : si ← si−1 ⊕ zi−1

29 : S1 ← s1 ∥ . . . ∥ s n
2

30 : S2 ← C1 ⊕ Y1 ⊕ S1

31 : S ← S1 ∥ S2

32 : M1 ← Y1 ⊕ S2

33 : M2 ← Y2 ⊕ (S1 ≪ 1)
34 : M ←M1 ∥M2

35 : return (S, M)

Figure 23: Gift-Cofb adversary A from Theorem 13 and the state-update-function
adversary Aξ from Lemma 7.

This yields

AdvCMT
Gift-Cofb(A) = 1

2µ
.

Adversary A makes q = 2µ + α + α + 2 queries to E: µ + α + 1 for computing the first
tuple, µ for inverting EncM, and α + 1 for inverting EncC.

When considering the masking values, inverting EncM might seem to be a problem, as
the adversary needs to invert the function using the correct masking values. We observe
that the masking values depend on the key, the nonce, and the length of associated data
and message/ciphertext. In particular, they are independent of the exact values of A, M ,
and C. Thus, when inverting EncM, the adversary merely has to choose how long the
associated data will be, as this allows to use the correct masking values.

The attack easily extends to CMTK, CMTN, CMTA, and CMT⋆
A attacks, following the

argument we gave for Romulus.

B.3 Photon-Beetle
The authenticated encryption scheme Photon-Beetle [BCD+21] is a (duplex) sponge-
based AE scheme. It uses the Photon permutation [GPP11] as the underlying permutation
and the Beetle mode of operation [CDNY18]. In contrast to the plain duplex, the

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 233

ρ ρ ρ
N

K

S

. . .

. . .

A1 Aα

ρ ρ ρ ρ

ξ ξ

S

M1 C1 Mµ Cµ T

. . .

. . .

ι0

ι1

S∗

Figure 24: Illustration of Photon-Beetle in terms of EncC (top) and EncM (bottom).
The state S∗, marked in red, is used in our CMT attack.

Beetle mode uses a state-update-function to determine the next input to the underlying
permutation of the sponge.

B.3.1 Description of Photon-Beetle

Photon-Beetle is described in Fig. 25 and illustrated in Fig. 24. It is a CpP scheme,
i.e., it processes the context (K, N, A) via the function EncC and subsequently processes
the message together with the output of EncC—an important property is that no part of
the context is input to EncM. In EncM, the permutation and the state-update-function
are applied in an alternating fashion. We omit the description of the latter, as our CMT
attack is independent of it.

B.3.2 Committing Attack Against Photon-Beetle

In this section, we show that Photon-Beetle does not achieve committing security. The
CMT attack is given in Theorem 14 below.

Theorem 14. Consider Photon-Beetle which is illustrated and described in Fig. 24
and Fig. 25, respectively. Let ρ be modeled as an ideal permutation. Then there exists an
adversary A, making q queries to ρ, such that

AdvCMT
Photon-Beetle(A) = 1 ,

where q = α + α. Here, α is the number of blocks for the associated data of the first tuple,
and α is the number of blocks for the second tuple that A outputs.

Proof. We construct the following CMT adversary A against Photon-Beetle as shown
in Fig. 26. It chooses (K, N, A) uniformly at random from the respective sets and computes
S ← EncC(K, N, A). Let S∗ denote the state before the domain separation is applied (see
Fig. 24). Adversary A then chooses different associated data A and inverts EncC starting
from S∗ up to the initial state. This initial state is then used as the concatenation of
nonce N and key K.25 As the final step, A picks a message M at random and outputs

25Note that these are likely to be different than K and N but not guaranteed to be.

234 Committing AE from Sponges

Photon-Beetle.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(S, M)
3 : return (C, T)

EncM(S, M)
4 : M1, . . . , Mµ

r←− pad10∗ (M, r)
5 : for i = 1, . . . , µ

6 : S ← ρ(S)
7 : (⌈S⌉r , Ci)← ξ(⌈S⌉r , Mi)
8 : S ← S ⊕ (0r ∥ ι1)
9 : S ← ρ(S)

10 : T ← ⌈S⌉τ
11 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

12 : return (C, T)

EncC(K, N, A)
13 : S ← N ∥ K

14 : A1, . . . , Aα
r←− pad10∗ (A, r)

15 : for i = 1, . . . , α

16 : S ← ρ(S)
17 : S ← S ⊕ (Ai ∥ 0c)
18 : S ← S ⊕ (0r ∥ ι0)
19 : return S

ξ(S, I)
20 : O ← Shuffle(S)⊕ I

21 : Y ← S ⊕ I

22 : return (Y, O)

Figure 25: Pseudocode of Photon-Beetle [BCD+21] in terms of EncC and EncM.
Here, Shuffle(S) = S2 ∥ (S1 ≫ 1) for S1, S2

r
2←− S.

((K, N, A, M), (K, N, A, M)). By construction, we have (K, N, A) ̸= (K, N, A) and it holds
that

Photon-Beetle.Enc(K, N, A, M) = EncM(EncC(K, N, A), M)
= EncM(S∗, M)
= EncM(EncC(K, N, A), M)
= Photon-Beetle.Enc(K, N, A, M) ,

thus A wins the game CMT.
A makes α queries to compute S∗ and additional α queries to compute (K, N), resulting

in q = α + α queries in total.

The attack is by construction also a valid CMTA attack as the associated data are
chosen to be different. While the adversary does not choose the key K and nonce N
for the second tuple, it is easy to see that the attack extends to CMTK and CMTN—if
(K, N) = (K, N), the adversary simply chooses different associated data A and repeats
the attack until the keys and nonces differ.

B.4 Xoodyak
The authenticated encryption scheme Xoodyak [DHP+21] is an AE scheme based on
a full-state keyed duplex. Xoodyak uses the Xoodoo permutation [DHAK18] as the
underlying permutation and the Cyclist mode of operation. The latter was introduced
as part of the Xoodyak specification and is an adaption of the Keyak mode [BDP+16]
to the lightweight setting.

B.4.1 Description of Xoodyak

The pseudocode of Xoodyak is given in Fig. 28 and further illustration is provided
in Fig. 27. Xoodyak uses a state of size 384 and is a CpP scheme, i.e., first S ←
EncC(K, N, A) is computed, followed by the computation of ciphertext and tag as (C, T)←

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 235

Photon-Beetle adversary A

1 : (K, N)←$K ×N
2 : S ← N ∥ K

3 : A←$A
4 : A1, . . . , Aα

r←− pad10∗ (A, r)
5 : for i = 1, . . . , α do
6 : S ← ρ(S)
7 : S ← S ⊕ (Ai ∥ 0c)
8 : S∗ ← S

9 : A←$A\{A}
10 : (K, N)← B(S∗, A)
11 : M ←$M
12 : return ((K, N, A, M), (K, N, A, M))

B(S∗, A)
13 : A1, . . . , Aα

r←− pad10∗ (A, r)
14 : for i = α, . . . , 1 do
15 : S∗ ← S∗ ⊕ (Ai ∥ 0c)
16 : S∗ ← ρ−1(S∗)
17 : N ∥ K ← S∗

18 : return (K, N)

Figure 26: Photon-Beetle adversary A from Theorem 14.

EncM(S, M). In EncC, the inputs are XORed onto the full-state (note that the last 32
bits are reserved for padding). In contrast to this, EncM uses a rate of 192 bits for the
computation of ciphertext and tag.

Xoodyak exhibits a form of padding, that is used by none of the other NIST candidates
and hence will be described shortly in the following: For a bit string X of length at most
352 and p ∈ {0, 1}8 define

padC(X, p) = X ∥ 00000001 ∥ 0368−|X| ∥ p ,

which is used for padding the context blocks. Further, for M ∈ {0, 1}≤192, we define
padM(M) = M ∥ 00000001, which will be used to pad the message blocks.

B.4.2 Committing Attack Against Xoodyak

We show that Xoodyak does not achieve committing security. The attack is stated in the
following theorem.

Theorem 15. Consider Xoodyak which is illustrated and described in Fig. 27 and Fig. 28,
respectively. Let ρ be modeled as an ideal permutation. Then there exists an adversary A

that makes q = 217 + 1 queries to ρ and fulfills

AdvCMT
Xoodyak(A) ≥ 1

2 .

Proof. We construct a CMT adversary A against Xoodyak. It uses a birthday attack to
find a collision in the last 32 bits of the sponge state after the first application of ρ. For
this, q = 217 + 1 different key-nonce pairs are sampled randomly. For i ∈ [q], we denote
them by Ki and Ni and write Ki ∥Ni = padC((Ki ∥ Ni ∥ enc8(Ni)), 00000010) for their
padded concatenation. Further, we consider the following random function

f : {0, 1}384 → {0, 1}32, f(X) = ⌊ρ(X)⌋32 ,

and compute f(Ki ∥ Ni) for each i ∈ [q]. By the birthday attack [BS23, Section 8.3]26,
a collision of f is found with probability at least 1

2 . Assume that such a collision has
been found and write (K, N) and (K, N) for the key-nonce pairs that lead to it, i.e., have

26Note that the prerequisite, regarding the size of domain and codomain of f , is fulfilled as 2384 ≥ 100·232.

236 Committing AE from Sponges

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

0n S

K ∥ N A1 A2 Aα−1 Aα

. . .

S

M1 MµC1 Cµ T

. . .

. . .

ι1 ι2

r/ r/

r+8
/

r+8
/

c−8
/

c−8
/

τ
/

Figure 27: Illustration of Xoodyak in terms of EncC (top) and EncM (bottom).
Here, K ∥ N = padC((K ∥ N ∥ enc8(|N)|), 00000010), Mi = padM(Mi), A1 =
padC(A1, 00000011), and for i = 2, . . . , α, Ai = padC(Ai, 08). In EncM, the increased rate
(r + 8) is required for the padding padM which appends 8 bits to the message blocks.

⌊ρ(K ∥N)⌋32 =
⌊
ρ(K ∥N)

⌋
32, where K ∥ N and K ∥ N denote the corresponding

padded values. Next, adversary A picks A ∈ {0, 1}352 at random and computes A ←⌈
ρ(K ∥N)

⌉
352⊕⌈ρ(K ∥N)⌉352⊕A. Together with the collision on the last 32 bits, A has

produced a collision on the whole state. Then, the adversary wins the game CMT against
Xoodyak by outputting (K, N, A, M) and (K, N, A, M) for M some randomly sampled
message. This is the case, as (K, N, A) ̸= (K, N, A) and the states after the associated data
is absorbed agree, from which point on only the same input (namely M) is processed for
both tuples. Hence, we obtain Xoodyak.Enc(K, N, A, M) = Xoodyak.Enc(K, N, A, M)
and in total have shown that A wins with probability at least 1

2 for q = 217 + 1 queries.

Note that, using the same strategy as presented above, we obtain an attacker that wins
with probability 1 after making 232 +1 queries. Further, the above attack is by construction
also a valid CMTK and CMTN attack as keys and nonces, respectively, are chosen to be
different. Moreover, it can be shown to be a CMTA attack: The same associated data
blocks are only chosen if the states after the first application of ρ already coincide in their
rate part. Since they agree in the last 32 bits by construction, this would constitute a
full-state collision of ρ, which is impossible for a permutation.

B.5 Isap
The authenticated encryption scheme Isap [DEM+21, DEM+17, DEM+20] is a sponge-
based scheme designed to withstand side-channel leakage. It features a re-keying approach
that guarantees that for each input a different session key is used. The re-keying function
uses a small rate to prevent adversaries from obtaining too much leakage.

B.5.1 Description of Isap

The pseudocode of Isap is given in Fig. 31 and further illustration is provided in Fig. 30.
Isap follows the EtM-approach, i.e., first the message is encrypted via EncM resulting in
a ciphertext C and afterwards, the tag T is computed using EncT, which processes the
context and the ciphertext. Both EncM and EncT internally uses the re-keying function

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 237

Xoodyak.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(S, M)
3 : return (C, T)

EncC(K, N, A)
4 : S ← 0n

5 : X ← K ∥ N ∥ enc8(|N |)
6 : Y ← S ⊕ padC(X, 06 ∥ 10)
7 : S ← ρ(Y)

8 : A1, . . . , Aα
352←−− A

9 : Y ← S ⊕ padC(A1, 06 ∥ 11)
10 : for i = 2, . . . , α

11 : S ← ρ(Y)
12 : Y ← S ⊕ padC(Ai, 08)
13 : S ← Y

14 : return S

EncM(S, M)
15 : Y ← S ⊕ (0r+8 ∥ ι1)

16 : M1, . . . , Mµ
r←−M

17 : for i = 1, . . . , µ

18 : Mi ← padM(Mi)
19 : S ← ρ(Y)
20 : Y ← S ⊕ (Mi ∥ 0c−8)
21 : Ci ← ⌈Y ⌉r
22 : Y ← Y ⊕ (0r+8 ∥ ι2)
23 : S ← ρ(Y)
24 : T ← ⌈S⌉τ
25 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

26 : return (C, T)

Figure 28: Pseudocode of Xoodyak [DHP+21] in terms of EncC and EncM.

ρK ρB ρK

. . .

. . .

. . .

. . .

K

IV

Xi Xx K∗

κ
/

n−κ
/

r1
/

c1
/

r1
/

c1
/

z
/

Figure 29: Illustration of Isap.Rk.

Isap.Rk to derive the session key. For the security analysis [DEM+21], EncM is viewed as
a keyed duplex construction while EncT is viewed as a suffix keyed sponge (SuKS) [DM19].

In Isap, the underlying permutation is applied several times between two absorptions,
the precise number depending on the position in the Isap sponge. For Isap.Rk, for
instance, more rounds are applied when the key is processed and when the tag is generated,
while fewer rounds are used in between. In summary, Isap uses four permutations ρK , ρH ,
ρB , and ρE , each based on the same permutation but applied a different number of times.

B.5.2 Committing Security of Isap

We show that Isap achieves CMT security. In the security proof for Isap [DEM+20], the
two permutations used in Isap.Rk (namely ρK and ρB) are modeled as one permutation.
We adopt this for our proof and denote the permutation used in Isap.Rk by ρ1 and the
one used in EncT by ρ2.27 In conformity with this, the rate in Isap.Rk is denoted by
r1 and the rate in EncT by r2. Furthermore, we consider a slightly different domain
separation in EncT, by XORing 1 ∥ 0c2−1 instead of 0c2−1 ∥ 1. By the same reasoning
as given for Ascon, this is a purely cosmetic change which allows us to view EncT as a

27The proof is independent of EncM which is why we do not need a third permutation.

238 Committing AE from Sponges

Isap.Rk ρE ρE

. . .

. . .

. . .

. . .

N K Mi MµCi Cµ

κ
/

κ/

κ
/

n−κ
/

r2
/

c2
/

≤r2
/

ρH ρH ρH ρH ρHIsap.Rk
. . .

. . .

. . .

. . .

. . .

. . .

N

IV

Ai C1 Cγ K T

0c2−1 ∥ 1

ν/

n−ν/

κ
/

κ
/

κ/

n−κ
/

r2/ r2/ r2/

c2/

κ/

X KA

Figure 30: Illustration of Isap in terms of EncM (top) and EncT (bottom), which both
rely on the re-keying function Isap.Rk. The values X and KA, marked in red, are used in
our CMT proof.

sponge with increased rate of r + 1. In particular, it neither affects the security of Isap
nor defeats the purpose of the domain separation.

Lastly, note that the scheme comes in two variants, using either Ascon-P or Keccak-P
as a permutation. The theorem given below holds for both instances, considering each
time the main parameter sets as described in Table 3. Since for all parameter sets under
consideration the key-length equals the tag-length (κ = τ = 128), we exclusively use the
variable κ in the following proof.

The proof for Isap follows the same idea as the one for Ascon, again using the collision
resistance of plain sponges. There are two main differences, though. First, Isap feastures
a larger capacity in the initial state which allows to directly apply Theorem 9.28 Second,
some extra care is necessary to handle the re-keying mechanism of Isap, which essentially
results in two applications of Theorem 9.

Theorem 16. Consider Isap which is illustrated and described in Fig. 30 and Fig. 31,
respectively. Let ρ1 and ρ2 be modeled by ideal permutations ρ1 and ρ2, respectively. Then
for any adversary A making q1 and q2 queries to ρ1 and ρ2, respectively, it holds that

AdvCMT
Isap (A) ≤ q1(q1 − 1)

2κ
+ q1(q1 + 1)

2n−κ
+ q2(q2 − 1)

2κ
+ q2(q2 + 1)

2n−max{κ,r2+1} .

Proof. Let (K, N, A, M), (K, N, A, M) be the output of a CMT adversary A against Isap.
Further note that IV denotes the initialization vector used in Isap. We assume that A

makes queries to ρ1 and ρ2 that correspond to its output, i.e., querying all states that
occur during the evaluation of Isap for the two output tuples of A. This assumption is
without loss of generality, as we can easily transform any adversary A into one that runs A
to obtain (K, N, A, M), (K, N, A, M) and—before outputting the same—makes all queries
to ρ corresponding to the evaluation of (K, N, A, M), (K, N, A, M).

The authentication component EncT uses a session key denoted by KA (resp. KA),
which results from an application of Isap.Rk to the key K (resp. K) and the intermediate
state X (resp. X) computed during EncT. We consider the event E that (N, A) = (N, A)

28In a similar vein, one can use the old indifferentiability bound [BDPV08] for Isap, whereas Ascon
requires the newer version [NO14].

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 239

Isap.Enc(K, N, A, M)
1 : C ← EncM(K, N, M)
2 : T ← EncT(K, N, A, C)
3 : return (C, T)

EncT(K, N, A, C)
4 : A1, . . . , Aα

r2←− pad10∗ (A, r2)

5 : C1, . . . , Cγ
r2←− pad10∗ (C, r2)

6 : Y ← N ∥ IV
7 : S ← ρH(Y)
8 : for i = 1, . . . , α

9 : Y ← S ⊕ (Ai ∥ 0c2)
10 : S ← ρH(Y)
11 : S ← S ⊕ 0n−1 ∥ 1
12 : for i = 1, . . . , γ

13 : Y ← S ⊕ (Ci ∥ 0c2)
14 : S ← ρH(Y)
15 : KA ← Isap.Rk(K, ⌈S⌉κ)
16 : S ← ρH(KA, ⌈S⌉κ)
17 : T ← ⌈S⌉τ
18 : return T

EncM(K, N, M)
19 : M1, . . . , Mµ

r2←− pad0∗ (M, r2)
20 : KE ← Isap.Rk(K, N)
21 : S ← KE ∥ N

22 : for i = 1, . . . , µ

23 : S ← ρE(S)
24 : Ci ← ⌈S⌉r2

⊕Mi

25 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

26 : return C

Isap.Rk(K, X)
27 : X1, . . . , Xz

r1←− X

28 : Y ← K ∥ IV
29 : S ← ρK(Y)
30 : for i = 1, . . . , z − 1
31 : Y ← S ⊕ (Xi ∥ 0n−r1)
32 : S ← ρB(Y)
33 : Y ← S ⊕ (Xz ∥ 0n−r1)
34 : S ← ρK(Y)
35 : return ⌈S⌉κ

Figure 31: Pseudocode of Isap [DEM+21] in terms of EncM and EncT.

and KA = KA. Using this, the CMT advantage can be divided up as follows

AdvCMT
Isap (A) = Pr[CMT(A)→ 1]

= Pr[E ∧ CMT(A)→ 1] + Pr[¬E ∧ CMT(A)→ 1] .

We start by giving an upper bound for the second summand. For this, we construct a CR
(see Definition 4) adversary B against a sponge-based hash function H2 obtained from
the permutation ρ2 with rate r2 = max{κ, r2 + 1}29, capacity c2 = n − r2, and output
length κ. Further 0κ ∥ IV is chosen as the initial state of H2. First, B runs A, which
outputs (K, N, A, M), (K, N, A, M). For every query that A makes to ρ2, the adversary B

makes the same query to its own permutation and sends the response back to A. Further,
Adversary B simulates ρ1 for A. Using this, B computes for both output tuples of A,
the state in EncT after the associated data and the ciphertext blocks are absorbed. We
denote the states for the first tuple and second tuple by X and X, respectively and the
session keys for EncT by KA and KA, respectively (cf. Fig. 32). The states obtained after
XORing these together are denoted by Z = X ⊕KA and Z = X ⊕KA.30

Let A1, . . . , Aα
r2←− pad10∗(A, r2) and A1, . . . , Aα

r2←− pad10∗(A, r2) be the division of
A and A into blocks of length r2. Analogously, the ciphertext C = EncM(K, N, M) =

29The definition of the rate over the maximum ensures that the argument works for both Isap variants
(Isap-K and Isap-A). More precisely, it guarantees that all inputs can still be fully absorbed after the
adjustment of the rate.

30Note that B can compute these values by looking up the queries and responses from A’s queries—using
the assumption that it makes permutation queries corresponding to its output. Thus, this step does not
require any additional permutation queries by B.

240 Committing AE from Sponges

EncM(K, N, M) is parsed as C1, . . . , Cγ
r2←− pad10∗(C, r2). The adversary B then outputs

O = (N ∥ 0∗, A1 ∥ 0∗, . . . , Aα ∥ 0∗, C1 ∥ 1 ∥ 0∗, . . . , Cγ ∥ 0∗, Z ∥ 0∗)
O = (N ∥ 0∗, A1 ∥ 0∗, . . . , Aα ∥ 0∗, C1 ∥ 1 ∥ 0∗, . . . , Cγ ∥ 0∗, Z ∥ 0∗) ,

where ∥ 0∗ denotes the padding with 0s up to length r2. A visualization for this is provided in
Fig. 32. We show that if A wins the game CMT against Isap and the event ¬E holds, then
the constructed adversary B wins the game CR against H2. Note that A winning the game
CMT implies that (K, N, A) ̸= (K, N, A) and EncT(K, N, A, C) = T = EncT(K, N, A, C).
Hence, the output tuples of B are mapped to the same result under H2 (namely T) and it
is only left to check that O ≠ O to guarantee a collision. As event ¬E holds, we know that
(N, A) ̸= (N, A) or KA ̸= KA. In the case that (N, A) ̸= (N, A), we have O ̸= O. Hence,
we can assume from now on that (N, A) = (N, A). Next, consider the case that KA ≠ KA.
As (N, A) = (N, A), we know that X = X and hence Z = ⌈X⌉κ ⊕KA ≠

⌈
X

⌉
κ
⊕KA = Z.

Thus, O ̸= O is also given in this case. So far, we have shown that

Pr[¬E ∧ CMT(A)→ 1] ≤ Pr[CR(B)→ 1] ≤ q2(q2 − 1)
2κ

+ q2(q2 + 1)
2n−r2

,

where the last inequality holds by Theorem 9, which bounds the probability of finding a
collision in a general sponge-based hash function. Here, we exploit the fact that B makes
the same number of queries to ρ2 as A.

Next, we give a bound for the first summand Pr[E∧CMT(A)→ 1]. For this, construct a
CR adversary C against a sponge-based hash function H1 obtained from the permutation ρ1
with rate r1 = κ, capacity c1 = n−r2, and output length κ. Further its initial state is given
by 0κ ∥ IV. The adversary C starts by running A, which outputs (K, N, A, M), (K, N, A, M).
For every query that A makes to ρ1, the adversary C makes the same query to its own
permutation and sends the response back to A. Further, adversary C simulates ρ2 for A.
Then, it computes X and X (analoguously to adversary B), and we write X1, . . . , Xκ

1←− X

and X1, . . . , Xκ
1←− X. Lastly, adversary C outputs (K, X1 ∥ 0κ−1, . . . , Xκ ∥ 0κ−1) and

(K, X1 ∥ 0κ−1, . . . , Xκ ∥ 0κ−1). Next, we show that if A wins the game CMT against
Isap and event E holds, then the constructed adversary C wins the game CR against
H1. First observe that A winning the game CMT, implies that (K, N, A) ̸= (K, N, A),
and Isap.Enc(K, N, A, M) = Isap.Enc(K, N, A, M). If at the same time event E holds,
i.e., (N, A) = (N, A) and KA = KA hold, then K ̸= K, as otherwise A would not be a
valid CMT adversary. Further note that X = X as (N, A) = (N, A). Hence, C wins the
game CR, because the tuples it outputs are different, but their image under H1 agrees (as
KA = KA). This implies that

Pr[E ∧ CMT(A)→ 1] ≤ Pr[CR(C)→ 1] ≤ q1(q1 − 1)
2κ

+ q1(q1 + 1)
2n−κ

,

where the last inequality holds by Theorem 9. Using r2 = max{κ, r2 + 1}, we obtain in
total

AdvCMT
Isap (A) ≤ q1(q1 − 1)

2κ
+ q1(q1 + 1)

2n−κ
+ q2(q2 − 1)

2κ
+ q2(q2 + 1)

2n−max{κ,r2+1} ,

which finishes the proof.

The dominant term in the bound from Theorem 16 is q1(q1−1)
2κ + q2(q2−1)

2κ , thus by
increasing κ (i.e., the tag and key length), we can increase the committing security. Note
however, that—for Isap-A—we can only increase κ up to 160 as for larger values the
other term q1(q1+1)

2n−κ + q2(q2+1)
2n−max{κ,r2+1} becomes the dominant term. This would result in

about 80-bit committing security. A similar argument applies for Isap-K, which deploys
Keccak-P as the underlying permutation. For this variant, we have n = 400 which allows
to increase κ up to 200, allowing for about 100-bit committing security.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 241

ρ2 ρ2 ρ2 ρ2Isap.Rk
. . .

. . .

. . .

. . .

N

IV

Ai Cγ K T

κ
/

n−κ
/

r2
/

c2
/

r2
/

c2
/

κ
/

κ
/

c2
/

κ
/

X KA

ρ2 ρ2 ρ2 ρ2

. . .

. . .

. . .

. . .

N

0∗ ∥ IV

Ai Cγ Z = (X ⊕KA) ∥ 0∗ T

r2
/

c2
/

r2
/

c2
/

r2
/

c2
/

r2
/

c2
/

κ
/

Figure 32: Illustration of a proof step for Isap (Theorem 16).. Here, r2 = max{κ, rH + 1}
(i.e., 129 for Isap-A and 145 for Isap-K) and c2 = n − r2; further write N = N ∥ 0∗,
Ai = Ai ∥ 0∗, C1 = C1 ∥ 1 ∥ 0∗ and Ci = Ci ∥ 0∗ for i ∈ {2, . . . , γ}.

B.6 Schwaemm
Schwaemm [BBC+20,BBdS+21] is a sponge-based AE scheme. The permutation used to
instantiate Schwaemm is Sparkle which is inspired by the block-cipher Sparx [DPU+16].
The authentication mode is a variant of the Beetle mode [CDNY18].

B.6.1 Description of Schwaemm

The pseudocode of Schwaemm is given in Fig. 34 and further illustration is provided
in Fig. 33. Schwaemm follows the CpP-approach, i.e., first the context is processed
resulting in S ← EncC(K, N, A) and afterwards the ciphertext is computed as (C, T)←
EncM(K, S, M). In Schwaemm the underlying permutation ρ is applied a varying number
of times, depending on the position in the sponge (ρa and ρb for a = 11 and b = 7), similar
to Isap and Ascon.

Like some of the other schemes, Schwaemm features a state-update-function that is
defined as follows :

ξ : {0, 1}r × {0, 1}r → {0, 1}r × {0, 1}r,

(S, I) 7→ (ξ1(S, I), ξ2(S, I)) = (FeistelSwap(S)⊕ I, S ⊕ I) .

for FeistelSwap : {0, 1}r → {0, 1}r, FeistelSwap(S) = S2 ∥ (S2 ⊕ S1) with S1 = ⌈S⌉ r
2

and
S2 = ⌊S⌋ r

2
. Furthermore, Schwaemm deploys a so-called rate-whitening function, given

by

ωc,r : {0, 1}c → {0, 1}r, ωc,r(I) = (I1, I2, I1, I2) for I1 = ⌈I⌉ c
2

, I2 = ⌊I⌋ c
2

.

In each round, it is applied between the state-update-function and the permutation. After
the final permutation, the last κ bits are XORed with the key to yield the tag. As for
Ascon, we refer to this as output-blinding.

B.6.2 Committing Security of Schwaemm

We show that Schwaemm achieves committing security. At the first glance, it looks like
one can apply the same attack used against Photon-Beetle: Invert EncC for some S

242 Committing AE from Sponges

N

K

ρa ρb ρb ρb S

. . .

. . .

ξ ξ ξ

A1 Aα−1 Aα

ω ω ω

ιA

S ρb ρb ρa

T

ξ ξ ξ

M1 Mµ−1 MµC1 Cµ−1 Cµ

ω ω ω

. . .

. . .

ιM K

Figure 33: Illustration of Schwaemm in terms of EncC (top) and EncM (bottom).

and take the result as the concatenation of key and nonce. However, Schwaemm deploys
output-blinding in EncM (the last XOR of the key in Fig. 33), that makes the attack
unlikely to succeed. Output-blinding is a feature we have also encountered in Ascon, as
an important feature for achieving committing security. Despite that, we cannot show
committing security in the same way, as Schwaemm lacks the state-blinding, that Ascon
has, and Schwaemm’s initial state does not contain a fixed component. However, we
noticed that introducing an IV to Schwaemm’s initial state suffices to obtain a committing
secure scheme—despite the weaker blinding mechanism. More precisely, we decrease the
length of the nonce from 256 to 128 bits31 and instead incorporate a fixed IV (of length
128 bits into the initial state. For the resulting modified version of Schwaemm, denoted
by SchwaemmIV, we can show about 64-bit committing security. For the proof, we model
the two permutations ρa and ρb by one ideal permutation ρ, as it was done for Isap and
Ascon. We further drop the domain separation in our proof for sake of simplicity. This
part can easily be incorporated at the cost of reducing the committing security by the
number of bits required for the domain separation.

Theorem 17. Consider Schwaemm which is illustrated and described in Fig. 33 and
Fig. 34, respectively. and SchwaemmIV, its modified version described above. Let ρa and
ρb be modeled as a random permutation ρ. Then for any adversary A making q ≤ 2127

queries to ρ, it holds that

AdvCMT
SchwaemmIV

(A) ≤ 1− exp
(
−q(q − 1)

2128

)
+ ϵ ,

for ϵ > (1−2−256)q2+(1+2−256)q
2129 .

Proof. Firstly, we observe that finding different inputs to SchwaemmIV.Enc that result
in the same ciphertext is easy. However, breaking CMT security also includes finding
colliding tags, which is what we focus on in the following. An adversary A that wins the
game CMT against SchwaemmIV its output denoted by (K, N, A, M), (K, N, A, M), in
particular finds a tag collision, i.e., wins the game TagColl (see Fig. 15). Hence we can

31Note that the modified scheme is still in accordance to the NIST requirements [NIST15] that nonces
are at least 96 bits long.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 243

Schwaemm.Enc(K, N, A, M)
1 : S ← EncC(K, N, A)
2 : (C, T)← EncM(K, S, M)
3 : return (C, T)

EncC(K, N, A)
4 : A1, . . . , Aα

r←− pad10∗ (A, r)
5 : Y ← K ∥ N

6 : S ← ρa(Y)
7 : for i = 1, . . . , α− 1
8 : (X, ·)← ξ(⌈S⌉r , Ai)
9 : Y ← (X ⊕ ω(⌊S⌋c)) ∥ ⌊S⌋c

10 : S ← ρb(Y)
11 : (X, ·)← ξ(⌈S⌉r , Aα)
12 : Y ← X ∥ (⌊S⌋c ⊕ ιA)
13 : Y ← (⌈Y ⌉r ⊕ ω(⌊Y ⌋c)) ∥ ⌊Y ⌋c
14 : S ← ρa(Y)
15 : return S

EncM(K, S, M)
16 : M1, . . . , Mµ

r←− pad10∗ (M, r)
17 : for i = 1, . . . , µ− 1
18 : (X, Ci)← ξ(⌈S⌉r , Mi)
19 : Y ← (X ⊕ ω(⌊S⌋c)) ∥ ⌊S⌋c
20 : S ← ρb(Y)
21 : (X, Cµ)← ξ(⌈S⌉r , Mµ)
22 : Y ← X ∥ (⌊S⌋c ⊕ ιM)
23 : Y ← (⌈Y ⌉r ⊕ ω(⌊Y ⌋c)) ∥ ⌊Y ⌋c
24 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

25 : S ← ρa(Y)
26 : T ← ⌈S⌉τ ⊕K

27 : return (C, T)

ξ(S, I)
28 : Y ← FeistelSwap(S)⊕ I

29 : O ← S ⊕ I

30 : return (Y, O)

Figure 34: Pseudocode of Schwaemm [BBdS+21] in terms of EncC and EncM.

deduce

AdvCMT
SchwaemmIV

(A) ≤ AdvTagColl
SchwaemmIV

(A) .

As a next step, we pass over to a plain sponge construction. For this, we construct a
ShiftedColl128 adversary B against a sponge-based hash function H obtained from the
permutation ρ with rate 256, capacity 128, and output length 128. Further, its initial
state is given by 0256 ∥ IV. First, B runs A, which outputs (K, N, A, M), (K, N, A, M).
For every query that A makes to ρ, the adversary B makes the same query to its own
permutation and sends the response back to A. Then B computes the state Si (and
respectively Si) after the i-th application of the permutation in SchwaemmIV evaluated in
(K, N, A, M) (and respectively (K, N, A, M)). Denote by Si,r and Si,c (and respectively
Si,r and Si,c) the rate and the capacity part of the state Si (and respectively Si). The
adversary B then outputs

X = K ∥ N ∥
(S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c)) ∥ . . . ∥
(Sα,r ⊕ ξ2(Sα,r, Aα)⊕ ωc,r(Sα,c)) ∥
(Sα+1,r ⊕ ξ2(Sα+1,r, M1)⊕ ωc,r(Sα+1,c)) ∥ . . . ∥
(Sα+µ,r ⊕ ξ2(Sα+µ,r, Mµ)⊕ ωc,r(Sα+µ,c)

X = K ∥ N ∥
(S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c)) ∥ . . . ∥
(Sα,r ⊕ ξ2(Sα,r, Aα)⊕ ωc,r(Sα,c)) ∥
(Sα+1,r ⊕ ξ2(Sα+1,r, M1)⊕ ωc,r(Sα+1,c)) ∥ . . . ∥
(Sα+µ,r ⊕ ξ2(Sα+µ,r, Mµ)⊕ ωc,r(Sα+µ,c) ,

which guarantees that H(X) (and H(X), respectively) models SchwaemmIV evaluated on

244 Committing AE from Sponges

(K, N, A, M) (and (K, N, A, M), respectively). More precisely, instead of the state-update-
function, XORing of the input, and rate-whitening applied in SchwaemmIV, for H we
XOR a suitable value which imitates these operations. A visualization for this is provided
in Fig. 35.

Next, we show that if A wins the game TagColl against SchwaemmIV, then the
constructed adversary B wins the game ShiftedColl128 against H. First observe that A

winning implies that (K, N, A, M) ̸= (K, N, A, M) and the corresponding tags T and T—
computed with SchwaemmIV—agree. Note that the latter implies that Sα+µ+1,c ⊕K =
Sα+µ+1,c⊕K, hence by choice of X and X it holds that H(X)⊕⌈X⌉128 = H(X)⊕

⌈
X

⌉
128.

Further, the fact that (K, N, A) ̸= (K, N, A), implies that X ̸= X: for (K, N) ̸= (K, N)
this is obvious while for (K, N) = (K, N) and A ̸= A, a simple analysis shows that X and
X differ at the point where the associated data blocks differ for the first time. This implies
that B wins the game ShiftedColl128.

Using the indifferentiability of sponges (cf. Theorem 10), we can replace H by a random
function F, as there exists an efficient simulator for the underlying permutation such that
A cannot distinguish between H and F. This yields

AdvShiftedColl128
H (A) ≤ AdvShiftedColl128

F (A) + ϵ ,

for ϵ > (1−2−256)q2+(1+2−256)q
2129 , which results from the application of Theorem 10.

As a last step, we observe that for a random function F : {0, 1}≥128 → {0, 1}128, it is
unlikely that B wins the game ShiftedColl128. For this, note that an adversary that wins
the game ShiftedColl128 against F with q queries, finds a collision in the following list of
uniformly distributed elements

L = {F(X1)⊕ ⌈X1⌉128 , F(X2)⊕ ⌈X2⌉128 , . . . , F(Xq)⊕ ⌈Xq⌉128} ,

for Xi ∈ {0, 1}≥128 being the inputs B queries to F. By Theorem 11, the probability for
this is bounded above by

1− exp
(
−q(q − 1)

2128

)
,

for q ≤ 2127. In total, we obtain

AdvShiftedColl128
H (A) ≤ AdvShiftedColl128

F (A) + ϵ

≤ 1− exp
(
−q(q − 1)

2128

)
+ ϵ ,

which finishes the proof of the theorem.

C Deferred Proofs
C.1 Proof of Lemma 2
Proof. We construct AC as shown in Fig. 5. As input it receives (K, N, S). It chooses an
arbitrary even number of associated data block α and chooses all except the first block
at random, i.e., A2, . . . , Aα ← $ {0, 1}n.32 In addition, A sets Aα+1 ← 0n.33 Then A

proceeds by inverting S using the ideal tweakable cipher to obtain Y . For i ∈ {1, . . . , α
2 },

A first computes S ← Y ⊕ A2i+1 followed by computing Y ← Ẽ−1(K, A2i, S), inverting
32We assume that these blocks are chosen to exhibit a valid padding.
33This corresponds to the input of the last application of ξ in the upper part of Fig. 3.

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 245

N ∥ K

IV
ρ ρ

. . .

. . .

S1,r

S1,c

ξ

A1

ω

0256

IV
ρ ρ

. . .

. . .

S1,r

S1,c

N ∥ K (S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c))

Figure 35: Illustration of a proof step for SchwaemmIV (Theorem 17). SchwaemmIV is
represented as a plain sponge as is shown for the first XOR in the above figure.

Game ShiftedCollκ
1 : X, X ← A()
2 : if X = X

3 : return 0
4 : return (F(X)⊕ F(X) = ⌈X⌉κ ⊕

⌈
X

⌉
κ
)

Figure 36: Security game ShiftedCollκ defined for a function F : {0, 1}≥κ → {0, 1}κ and
used in the proof for SchwaemmIV (Theorem 17).

the state-update-function ξ and the ideal tweakable cipher. Denote the resulting state by
Y∗ (see also the state marked in red in Fig. 3). Adversary A sets the first associated data
as A1 ← Y∗ which ensures that EncC(K, N, A) = S.

The number of queries to the ideal tweakable cipher Ẽ by A is
⌊

α
2

⌋
+ 1: the initial one

plus
⌊

α
2

⌋
for the for-loop.

C.2 Proof of Lemma 3
Proof. We construct adversary AM as shown in Fig. 5 which gets (K, N, (C, T)) as input.
For ease of exposition, we assume that the length of C is a multiple of the block size
n.34 Let C1, . . . , Cγ

n←− C. The adversary AM first sets Y ← T and then computes
S ← G−1(Y). For i ∈ {1, . . . , γ}, AM computes Y ← Ẽ−1(K, N, S)35 followed by the
computation of (S, Mi)← Aξ(Y, Ci) from Lemma 1. Finally, AM outputs (S, M), where
M = M1 ∥ . . . ∥ Mγ . By construction, it holds that EncM(K, N, S, M) = (C, T) as AM

inverted all invocations of Ẽ and ξ during EncM—using Lemma 1 for the latter.
A queries the ideal tweakable cipher Ẽ a total of µ times.

C.3 Proof of Lemma 4
Proof. For the proof of the claim, we define the following auxiliary events:

1. Event Et (target hitting query):
34This is justified by letting A choose a message satisfying this.
35Note that we drop the counter which is part of the tweak for simplicity.

246 Committing AE from Sponges

A makes a query Y to ρ such that ⌊ρ(Y)⌋c⋆ = IV or A makes a query S to ρ−1 such
that

⌊
ρ−1(S)

⌋
c⋆ = IV.

2. Event Ec (colliding queries):
A makes queries Y ̸= Y to ρ such that ⌊ρ(Y)⌋c =

⌊
ρ(Y)

⌋
c

or A makes queries Y to
ρ and S to ρ−1 such that ⌊ρ(Y)⌋c =

⌊
ρ−1(S)

⌋
c
.

Next, we show that if A triggers PP, then it triggers one of the events defined above. For
the proof assume that PP holds and denote the problematic paths A finds by (P, P). We
first consider the case that there is at least one backward edge in (P, P). We assume
without loss of generality that P contains at least one backward edge. Note that for each
PS-path that contains at least one backward edge, we can define a corresponding minimal
PS-path containing exactly one backward edge. To do this—starting from the end of the
path—all edges are removed, until the last edge of the path is a backward edge and all
other edges (if any remain) are forward edges. For sake of simplicity, we write P also for
the minimal path corresponding to P in the following and write it as

P =Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss .

We further distinguish the following two sub-cases:
Case 1: s = 1

The path is simply Z0|Y0 → S1 and A queried S1 to ρ−1. By construction, we have
⌊Y0⌋c⋆ = IV and ρ−1(S1) = Y0, hence in particular

⌊
ρ−1(S1)

⌋
c⋆ = ⌊Y0⌋c⋆ = IV. Thus

A’s query triggered event Et.

Case 2: s ≥ 2
The path is Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss. Except for the
last edge, all edges are forward edges. By construction, we have ⌊Ss−1⌋c = ⌊Ys−1⌋c.
Furthermore, Ss−1 is the result of querying Ys−2 to ρ (forward edge) and Ys−1 is the
result of querying Ss to ρ−1 (backward edge). This yields that these two queries
trigger event Ec.

We now consider the case that the penultimate states Ys−1 and Y s−1 are equal, but P and P
contain no backward edges. For such a pair of paths (P, P), we define the corresponding min-
imal pair of PS-paths by choosing s + s minimal such that (Z0, . . . , Zs−1) ̸= (Z0, . . . , Zs−1)
and Ys−1 = Y s−1 still hold. We consider the minimal pair of paths corresponding to (P, P)
and—for sake of simplicity—also denote them by (P, P). As before we use the following
representation

P =Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss

P =Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

Without loss of generality, we further assume s ≤ s and distinguish between the following
three sub-cases:
Case 1: s = 1 ∧ s = 1

The paths are simply Z0|Y0 → S1 and Z0|Y 0 → S1. By construction, we have
⌈Y0⌉r = Z0 and

⌈
Y 0

⌉
r

= Z0 which leads to a contradiction as Z0 ̸= Z0 (recall that
problematic paths have different inputs) but Y0 = Y 0. Thus, this case cannot occur.

Case 2: s = 1 ∧ s ≥ 2
The paths are

Z0|Y0 → S1

Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

Juliane Krämer, Patrick Struck and Maximiliane Weishäupl 247

We have ⌊Y0⌋c⋆ = IV by construction and Y0 = Y s−1 by assumption. This allows
to deduce

⌊
Ss−1

⌋
c⋆ = IV. Since Ss−1 is the result of querying Y s−2 to ρ, this query

triggered event Et.

Case 3: s ≥ 2 ∧ s ≥ 2
The paths are

Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss

Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

Consider the penultimate edges of both paths, i.e., the edges from Ys−2 to Ss−1 and
from Y s−2 to Ss−1, which are both forward edges. By assumption, Ys−1 = Y s−1
holds. We have to distinguish two more cases based on the inputs Zs−1 and Zs−1:

Case 3.1: Zs−1 = Zs−1
From Ys−1 = Y s−1 and Zs−1 = Zs−1, we can conclude that Ss−1 = Ss−1.
Then, however, one can obtain a pair of shorter paths by dropping the last
edges of both P and P while maintaining the desired property. Thus this case
is impossible as it contradicts the minimality of the paths.

Case 3.2: Zs−1 ̸= Zs−1
As Ys−1 = Y s−1 and Zs−1 ≠ Zs−1, we can deduce Ss−1 ̸= Ss−1 and ⌊Ss−1⌋c =⌊
Ss−1

⌋
c
. Then Ys−2 ≠ Y s−2 and the queries on Ys−2 and Y s−2 triggered event

Ec.

Collecting the above, yields

Pr[PP] ≤ Pr[Et ∨ Ec] ≤ Pr[Et] + Pr[Ec] .

We apply Lemma 6 for c⋆ and obtain Pr[Et] ≤ q
2c⋆−1 and once again for c, which gives

Pr[Ec] ≤ q(q−1)
2c .

C.4 Proof of Theorem 3
Proof. In the proof of [BS23, Theorem 8.6], the advantage is decomposed as follows

AdvCR
H (A) = Pr[CP] ≤ Pr[CP ∧ ¬PP] + Pr[PP] ,

for CP the event that A finds a pair of colliding paths. Bounding the first summand works as
in the original proof—hence we do not repeat it here—and results in Pr[CP∧¬PP] ≤ q(q−1)

2w .
For the second summand, we apply Lemma 4, which gives Pr[PP] ≤ q

2c⋆−1 + q(q−1)
2c .

C.5 Proof of Theorem 5
Proof. Adversary B simply runs (K, N, A), (K, N, A)← A, picks an arbitrary message M ,
and outputs (K, N, A, M), (K, N, A, M). Since A wins the game KeyColl, it holds that
K ̸= K and

EncC(K, N, A) = EncC(K, N, A) =: S∗ .

Using the fact that Ae is a full-CpP scheme, we get

zp-Ae.Enc(K, N, A, M) = EncM(EncC(K, N, A), 0z ∥M)
= EncM(S∗, 0z ∥M)
= EncM(EncC(K, N, A), 0z ∥M)
= zp-Ae.Enc(K, N, A, M) .

Thus, B wins game CMTK.

248 Committing AE from Sponges

C.6 Proof of Theorem 7
Proof. For sake of simplicity, we give the proof for the case z = n. The adversary A

generates an arbitrary context-message-pair (K, N, A, M) and computes the ciphertext
(C, T)← zp-Elephant.Enc(K, N, A, M). Let M1, . . . , Mµ

n←− pad0∗(0z ∥M, n) be the µ
message blocks, where it holds that M1 = 0n. Therefore, the ciphertext consists of µ n-bit
blocks C = C1 ∥ . . . ∥ Cµ, where C1 = Ẽ(K, (0, 1), N)⊕M1 = Ẽ(K, (0, 1), N). In order to
do these computations, A needs to make µ queries to Ẽ.

Next, A chooses K ̸= K at random to make sure that the attack is a valid CMTK attack.
To find the second nonce N , A queries (K, (0, 1), C1) to Ẽ−1 and sets the response to be N .
This guarantees that the first ciphertext block C1 is an encryption of the all-zero message
when using N . To find M , A computes M i ← Ẽ(K, (i− 1, 1), N)⊕ Ci, for i ∈ {2, . . . , µ}.
This then yields that (K, N, M) and (K, N, M) yield the same ciphertext, i.e.,

EncM(K, N, 0z ∥M) = C = EncM(K, N, 0z ∥M) .

Next, A chooses arbitrary A and computes T ← EncT(K, N, A, C). It remains to find A
that result in the same tag, i.e., EncT(K, N, A, C) = T . The attack is effectively the exist-
ing committing attack against Elephant (cf. Theorem 12); the mere difference is that A

targets the second associated data block since it has already fixed N which determines part
of the first associated data block. Adversary A then outputs (K, N, A, M), (K, N, A, M).
From the above we can conclude that the outputs by A result in the same ciphertext
(C, T), which, together with the fact that K ̸= K, yields that

AdvCMTK
zp-Elephant(A) = 1 .

The number of queries to Ẽ by A accumulate to 2µ + 2γ + α + α: 2µ for computing
(K, N, M) and (K, N, M); and 2γ + α + α for computing A and A.

The proof generalizes to the case z ≤ n by letting A choose the message such that the
first bits are 0n−z, which ensures that the first message block is 0n.

C.7 Proof of Theorem 8
Proof. The adversary A picks a key-nonce pair (K, N) at random. It then picks an
arbitrary message M and computes C ← EncM(K, N, 0z ∥M)—making µ queries to ρ3
and ν + 1 queries to ρ1. Subsequently, the adversary applies a birthday attack on the tag,
by computing EncT(K, N, ·, C) for different associated data. By [BS23, Section 8.3], a
collision is found with probability 1

2 after trying 2 τ
2 +2 + 1 different associated data. Let A

and A be the associated data that led to a collision as part of the birthday attack. Finally,
A outputs (K, N, A, M), (K, N, A, M).

For each associated data, A makes α + γ + 2 queries to ρ2 (evaluating EncT) and κ + 1
queries to ρ1 (evaluating Isap.Rk). In total, the queries by A are q1 = (2 τ

2 +1 + 1)(κ + 1) +
ν + 1 queries to ρ1, q2 = (2 τ

2 +1 + 1)(α + γ + 2) queries to ρ2, and q3 = µ queries to ρ3.

	Introduction
	Contribution
	Related Work

	Authenticated Encryption and the NIST LWC Finalists
	Notation
	Definitions
	NIST LWC Finalists
	Classes of AE Schemes.
	State-Update-Function.
	Achieving Committing Security via Transformations.

	Committing Security Analysis
	Romulus
	Description of Romulus
	Committing Attack Against Romulus

	TinyJAMBU
	Description of TinyJAMBU
	Committing Attack Against TinyJAMBU

	Ascon
	Description of Ascon
	Committing Security of Ascon

	Zero-Padding the NIST Finalists
	Motivation and Description of the Zero-Padding Approach
	Zero-Padding and Context-Pre-Processing Schemes
	Zero-Padding and Elephant
	Zero-Padding and ISAP

	Conclusion
	References
	Additional Preliminaries
	The NIST LWC Finalists
	Paddings and Security Notions
	(Tweakable) Block-Ciphers
	Sponges
	Existing Results

	Additional Committing Security Analysis
	Elephant
	Description of Elephant
	Committing Attack Against Elephant

	GIFT-COFB
	Description of GIFT-COFB
	Committing Attack Against GIFT-COFB

	PHOTON-Beetle
	Description of PHOTON-Beetle
	Committing Attack Against PHOTON-Beetle

	Xoodyak
	Description of Xoodyak
	Committing Attack Against Xoodyak

	ISAP
	Description of ISAP
	Committing Security of ISAP

	Schwaemm
	Description of Schwaemm
	Committing Security of Schwaemm

	Deferred Proofs
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Theorem 7
	Proof of Theorem 8

