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The Sponge Construction [Bertoni et al., 2007]
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M1‖ · · · ‖Mk is the message padded into r -bit blocks
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Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world ideal world

H P SRO

D

• (HP ,P) for a random primitive P should behave like a random oracle RO paired

with a simulator S that maintains construction-primitive consistency

• H is indifferentiable from RO for some simulator S whenever any D can

distinguish the two worlds only with a negligible probability

• Indifferentiability advantage:

Adviff
H (q) = max

D with q queries

∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣
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Indifferentiability of the Sponge

• It has been proven that [Bertoni et al., 2008]

Adviff
Sponge (q) = O

(
q2

2c

)
=⇒ The sponge is unlikely differentiable from a RO with less than q ≈ 2c/2 queries

• The bound is tight: finding collisions on the inner part allows to mount full-state

collisions

4 / 13



Security of Keyed Sponges

• Keyed instances of the sponge may achieve security beyond c/2 bits

• Example: outer-keyed sponge

OKS(K ,M) = Sponge(K‖M)

If K large enough, and online complexity σ � 2c/2, OKS is secure up to 2c/σ

queries [Andreeva et al., 2015], [Naito and Yasuda, 2016], [Mennink, 2018]

• One can go even further to 2c security with Ascon-PRF [Dobraunig et al., 2021]

(see [Mennink, 2023] for the exact statement) =⇒ doubled security strength!
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Motivation

• Consider a permutation with size b = 320 (Ascon):

• Sponge: up to 160 bits of security

• Outer-keyed sponge: up to 270 bits of security (provided σ < 250)

• Smaller permutation sizes: consider Elephant [Beyne et al., 2020] NIST LWC

finalist, based on permutations of sizes 160, 176, and 200 bits:

• AEAD with at least 112 bits of security (provided σ < 250)

• Sponge allows at most 100 bits of security =⇒ no hashing functionality

Objective of this work: develop a permutation-based hashing

construction with security beyond b/2 bits
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Double Block Length Hashing (DBLH)

• High-level idea: double the state size, call the primitive multiple times per

compression function call

• Example: MDPH [Naito, 2019]
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• Proven indifferentiable DBLH constructions are block cipher-based

• Block ciphers are compressing primitives, permutations are not
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The Double Sponge
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• The mixing layer is a simple MDS matrix: MIX =

(
1 2

2 1

)
∈M2×2

(
GF (2b)

)
• r bits absorbed/squeezed per compression function call

• Can use the same permutation at the top and bottom parts using domain

separator bits
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Security of the Double Sponge

• We prove 2c/3 bits of security:

Adviff
HP (q) ≤ 40q

3
2

2c − 3q

=⇒ Beyond the birthday bound in b when 3r ≤ c

=⇒ Can use smaller permutations, for a fixed level of security. For example:

• b = 176 (Spongent−π[176]) yields 112 bits of security with r = 7

• b = 200 (Keccak−f [200]) yields 112 bits of security with r = 31
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Our Simulator

IV top

r

c

M1

IV bot

r

c

M1

Ptop

MIX

Atop

Pbot Abot

⇐⇒ IV top

IV bot

Atop

Abot

M1

• Simulator S keeps track of the graph construction from its query history and

ensures RO consistency as long as no bad event occurs

• S ensures that there exist no partial edge (i.e., S decides the image of

Atop ⊕ (M2‖0c), but not of Abot ⊕ (M2‖0c))
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World Decomposition

Similarly to [Naito and Ohta, 2014], an intermediate world is introduced:

SRO

D

SH

RO

D

PH

D

RO consistency as long as no

BAD =⇒ indistinguishable

Statistical distance between

S and P as long as no BAD

=⇒ O
(

q3/2

2c

)
• Probability of BAD: O

(
q3/2

2c

)
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Tightness of the Bound

• With respect to our simulator: attack in 2
2c+r
3

=⇒ a gap of r/3 bits, likely lossy on the proof side

• With respect to any simulator: open question, designing a simulator that defeats

the aforementioned attack and proving indifferentiability seems very hard

• We did not find a collision attack better than a “naive” one with cost 2c+r/2
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Conclusion

• Double block length XOF construction:

• Based on one b-bit permutation

• Secure beyond b/2 bits given certain parameter sizes

=⇒ Allows to use smaller permutations for hashing

• Future work:

• Close the gaps between security bound and attacks?

• Explore alternative constructions?

Thank you for your attention!
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Backup Slide: Bad Events

Three classes of bad events:

• Collision-taming:
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