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Algebraic Transition Matrices
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Algebraic Transition Matrices: An example
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Algebraic Trails
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Algebraic Trails
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Key Addition
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Finding Integral Properties

Simple properties

 F (x) =
x≼u
∑ v A  v ,u

F

1. Prove all trails from  to  have zero correlation.

2. Prove all trails from  to  are key-independent, then sum trails.

3. Sum trails from  to  per key-monomial.
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Finding Integral Properties on 9-round PRESENT

9 rounds: 470 dimensional space of properties

 F  (x) +
x  =x  =x  =x  =01 2 3 4

∑ 5 F  (x) =13 c  1

 F  (x) +
x  =05

∑ 5  F  (x) =
x  =09

∑ 13 c  2

 F  (x)F  (x)F  (x)F  (x) =
x  +x  =05 9

∑ 1 17 33 49 c  3

14



Duality

 x =
x≼u
∑ v

 ⋅

precursor

 1  {x≼u}  =
monomial

 xv δ  u,v

E =F M  T M  m
F

n
−1

15



Duality

 x =
x≼u
∑ v

 ⋅

precursor

 1  {x≼u}  =
monomial

 xv δ  u,v

E =F M  T M  m
F

n
−1

15



Conclusion

Integral cryptanalysis fits in the geometric approach

New insight in and better understanding of integral
cryptanalysis

Improved search methods
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Future work

Don't ignore the key

Weak key

Key schedule

Build on/Improve search for generalized integral properties

Allow key in computation

Key-recovery by selection of useful properties from solution
space
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Coming Soon

Ultrametric integral cryptanalysis

Justification of basis by simplification of multiplication

 r(F (x)) =∑x∈X 0 mod 2l
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