Improved Attacks on LowMC with Algebraic Techniques

Yimeng Sun^{1,3} Jiamin Cui^{1,3} Meiqin Wang^{1,2,3}

¹School of Cyber Science and Technology, Shandong University, Qingdao, China

²Quan Cheng Shandong Laboratory, Jinan, China

³Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China

March, 2024

1 Background

- **2** Methods for Solving Multivariate Equation Systems
- **3** New difference enumeration attack
- 4 Low-Memory Attacks against LowMC with Single-Data Complexity

LowMC

- Proposed at Eurocrypt 2015
- Flexible parameters (partial or complete Sbox layers...)
- The underlying block cipher of the digital signature algorithm PICNIC

Figure 1: The round function of LowMC

n: block size k: key size m: # S-boxes per round

Security

The Security of PICNIC is directly related to the difficulty of recovering the secret key K from a single plaintext/ciphertext (p, c).

- LowMC \rightarrow LowMCv2
 - Higher-order differential attack (ICISC 2015)
 - Interpolation attack (Asiacrypt 2015)
- $LowMCv2 \rightarrow LowMCv3$
 - Difference enumeration attack (ToSC 2018)
- LowMCv3
 - 2 chosen plaintext-ciphertext pairs
 - Difference enumeration + algebraic method (CRYPTO 2021)
 - Algebraic MITM method (Asiacrypt 2022)
 - 1 known plaintext-ciphertext pair (PICNIC setting)
 - Guess-and-determine (GnD) attack (ToSC 2020, Asiacrypt 2021)
 - Polynomial method (EUROCRYPT 2021)
 - Polynomial method + GnD (Tosc 2022, ePrint 2022)

Consider a system of m Boolean equations in u variables denoted by E(x) as:

$$E(x): E_0(x) = E_1(x) = \dots = E_{m-1}(x) = 0,$$
(1)

where the algebraic degree of each E_i is bounded by $\deg(E_i) \leq d$ and $x = (x_0, x_1, \cdots, x_{u-1}) \in \mathbb{F}_2^u$.

•
$$x \to (y, z) = (y_0, y_1, \cdots, y_{u-u_1-1}, z_0, z_1, \cdots, z_{u_1-1}).$$

Problem

How do we solve this equation system?

The first method: the crossbred algorithm for d = 2

 $E_i(x)$ can be rewritten as follows and each element in M and B is linear and quadratic in y.

$$M \cdot (z_0 z_1, z_0 z_2, \cdots, z_{u_1 - 2} z_{u_1 - 1}, z_0, z_1, \cdots, z_{u_1 - 1})^T = B, \qquad (2)$$

The core idea:

- Randomly take $\ell = u_1 + 1$ different equations from E(x) and construct the new equation system $\tilde{E}(x)$.
- A solution of E must be a solution of \tilde{E} . But a solution of \tilde{E} is not always a solution of E. We choose to enumerate the solutions of \tilde{E} instead of E and then verify them by E.

•
$$\tilde{A}(x) = \prod_{i=0}^{\ell-1} (\tilde{E}_i(x) \oplus 1)$$

- $\tilde{A}(\hat{x}) = 1$ if and only if \hat{x} is a solution of $\tilde{E}(x)$.
- Enumerate all possible x such $\tilde{A}(x) = 1$.

- **difference enumeration phase**: enumerate all the possible differential trails to recover the compact differential trails.
- **key-recovery phase**: retrieve the full key from the recovered differential trails.

Difference enumeration phase

Figure 2: Difference enumeration phase

Difference enumeration phase (Asiacrypt 2022)

Figure 3: Difference enumeration phase (Asiacrypt 2022)

guess input diffs for e SB

Figure 4: Introduce variables to represent the output differences of the S-boxes

Difference enumeration phase (Asiacrypt 2022)

$$M \cdot (u_0, u_1, \cdots, u_{3m\ell-1})^T \oplus \alpha = \gamma$$

$$(4)$$

$$\underbrace{\text{Gauss elimination}}_{\text{Gauss elimination}} \left(\frac{\star}{M_1'' \mid 0} \right) \cdot \left(\begin{array}{c} u_0 \\ u_1 \\ \cdots \\ u_{3t-1} \\ u_{3t} \\ \cdots \\ u_{3m\ell-1} \end{array} \right) \oplus \left(\frac{\star}{\alpha''} \right) = \left(\frac{\star}{\gamma''} \right)$$

$$\longrightarrow M_1'' \cdot (u_0, u_1, \cdots, u_{3t-1})^T \oplus \alpha'' = \gamma''.$$

$$(5)$$

• The offline phase

• Insert the tuple $(u_0, u_1, \cdots, u_{3t-1}, \gamma'')$ into the table D_u .

- The online phase
 - Each $\gamma \stackrel{D_u}{\leftarrow} (u_0, u_1, \cdots, u_{3t-1}).$
 - Solve for $(u_{3t}, u_{3t+1}, \cdots, u_{3m\ell-1})$ by enumerating all the free variables.

Problem

When the number of attacked rounds increases, the time complexity to enumerate all the free variables grows since we still assume them all independent variables.

Is it possible to improve further?

New difference enumeration phase

Figure 5: The new difference enumeration attack framework

$$M'_1 \cdot (u_0, u_1, \cdots, u_{3t-1})^T \oplus M'_2 \cdot (u_{3t}, u_{3t+1}, \cdots, u_{3m\ell-1})^T \oplus \alpha' = \gamma'.$$

The last $\omega = n - 3m + 3e - rank(M'_2)$ rows are all zeros. Let

$$\omega' = n - 3m + 3e - (3m\ell - 3t)$$

= $n - 3mr_1 + 3e + 3t$.

We can immediately obtain ω' linear equations involving 3t variables as:

$$\gamma^{'''} = M_1^{'''} \cdot (u_0, u_1, \cdots, u_{3t-1})^T \oplus \alpha^{'''}, \tag{6}$$

- The new offline phase
 - Insert the tuple $(u_0, u_1, \cdots, u_{3t-1}, \gamma'')$ into the table D'_u .

Observation1

Denote the input difference and output difference of the 3-bit LowMC S-box by $(\Delta x_0, \Delta x_1, \Delta x_2)$ and $(\Delta z_0, \Delta z_1, \Delta z_2)$, respectively. The following 2 cubic equations are sufficient to describe its DDT:

$$(1 \oplus \Delta x_0)(1 \oplus \Delta x_1)(1 \oplus \Delta x_2) = (1 \oplus \Delta z_0)(1 \oplus \Delta z_1)(1 \oplus \Delta z_2),$$

$$(1 \oplus \Delta x_0)(1 \oplus \Delta x_1)(1 \oplus \Delta x_2) = \Delta x_0 \Delta z_0 \oplus \Delta x_1 \Delta z_1 \oplus \Delta x_2 \Delta z_2 \oplus$$

• The new online phase.

• Each
$$\gamma \stackrel{D_u}{\leftarrow} (u_0, u_1, \cdots, u_{3t-1}).$$

• Obtain 2g equations of degree 3 based on the Observation1 and perform Dinur's algorithm on them and find the solution.

Key-recovery phase

- active S-box: 2 linear equations
- inactive S-box: 14 quadratic equations
- a: # active S-boxes b: # inactive S-boxes k + 3b: # variables

- $2a \ge k + 3b$: Gaussian elimination.
- 2a < k + 3b: Gaussian elimination + Linearization technique.

Problem

Lower success probability.

- $2a \ge k + 3b$: Gaussian elimination.
- 2a < k + 3b
 - For the first λ inactive S-boxes, we can construct 14λ quadratic equations in these free variables, $1 \leq \lambda \leq b$.
 - Gaussian elimination + the crossbred algorithm.
- In order to facilitate the complexity calculation, we have constrained the number of *a* to the lower bound, so that the success probability of our attack is about 0.9.

Results

n	$\mid k$	$\mid m$	D	$\mid R$	$ r_0$	$ r_1$	$ r_2$	$\mid r$	$\mid T$	M	Pro.	R-r
128	128	1	2	182	42	68	67	177	125.38	122.76	0.56	5
					42	67	68	177	123.21	117.18	0.90	5
					42	69	68	179	126.91	120.90	0.90	3
128	128	10	2	20	4	7	6	17	125.2	98.58	0.56	3
					4	7	6	17	117.59	106.02	0.90	3
192	192	1	2	273	64	101	102	267	189.72	182.28	0.51	6
					64	101	102	267	186.12	178.56	0.95	6
					64	104	102	270	191.68	184.14	0.95	3
192	192	10	2	30	6	9	10	25	189.72	124.62	0.51	5
					6	10	9	25	165.38	159.96	0.95	5
					6	11	9	26	183.93	178.56	0.95	4
256	256	1	2	363	85	136	136	357	253.34	247.38	0.54	6
					85	135	137	357	250.46	241.8	0.97	6
					85	138	137	360	255.44	249.24	0.97	3
256	256	10	2	38	8	13	13	34	253.82	187.86	0.54	4
					8	13	13	34	231.08	217.62	0.97	4
					8	14	13	35	249.63	236.22	0.97	3

Figure 6: $S(k_{3i}, k_{3i+1}, k_{3i+2}) = (z_{3i}, z_{3i+1}, z_{3i+2})$

If we guess two input bits as $k_{3i+1} = g_{2i}$ and $k_{3i+2} = g_{2i+1}$, the 3-bit key variable takes value from the set

$$B^{g_{2i}g_{2i+1}} = \{ (y_i \oplus g_{2i}g_{2i+1}, g_{2i}, g_{2i+1}) \mid y_i \in \{0, 1\} \},\$$

where $g_{2i}, g_{2i+1} \in \{0, 1\}$.

• For example, consider the case when $g_{2i} = 0$ and $g_{2i+1} = 0$, then we have $B^{00} = \{(0, 0, 0), (1, 0, 0)\}.$

Construct the equation system

Figure 7: The attack setup for even and odd rounds for LowMC instances. The first round is linearized.

Denote the key variables by $K = (k_0, k_1, \dots, k_{n-1}), n = k = 3m$.

Associated Function

• After guessing 2m bits $G = (g_0, g_1, \cdots, g_{2m-1}) \in \{0, 1\}^{2m}$, we obtain n equations over the partial space $K \in B^G = B^{g_0g_1} \times \cdots \times B^{g_{2m-2}g_{2m-1}}$, denoted by

$$E_G(K): E_{G,0}(K) = E_1(K) = \dots = E_{G,n-1}(K) = 0.$$

• For any given $G = (g_0, g_1, \cdots, g_{2m-1}),$

$$E_{G,i}(K) = \boldsymbol{E}_{G,i}(Y), 0 \le i \le n-1.$$

• We call $E_{G,i}$ the associated function of $E_{G,i}$ and Y the associated vector of K.

- $K \to (K_1|K_2), G \to (G_1|G_2).$
- Randomly select *l* equations from the *n* equations and denote the new equation system as:

$$\tilde{E}_G(K_1, K_2)$$
: $R_{G,0}(K_1, K_2) = \dots = R_{G,l-1}(K_1, K_2) = 0.$

Note

A solution of E_G must be a solution of \tilde{E}_G , but a solution of \tilde{E}_G is not always a solution of E_G . We choose to enumerate solutions of \tilde{E}_G and then verify them by E_G .

The details of the algorithm

•
$$\tilde{E}_G(K_1^*, K_2^*) \longleftrightarrow \tilde{A}_G(K_1^*, K_2^*) = 1 \longleftrightarrow \tilde{F}_G(K_1^*) = 1$$

• $\tilde{A}_G(K_1, K_2) = \prod_{i=0}^{l-1} (R_{G,i}(K_1, K_2) \oplus 1)$
• $\tilde{F}_G(K_1) = \bigoplus_{K_2 \in B^{G_2}} \tilde{A}_G(K_1, K_2)$

• Let $\tilde{F}_{G,i}[0](Y_1) = \bigoplus_{Y_2 \in \{0,1\}^{m_1}, y_{m-m_1+i}=0} \tilde{A}(Y_1, Y_2)$

Proposition

Assume (K_1^*, K_2^*) to be an isolated solution of \tilde{E}_G and (Y_1^*, Y_2^*) to be the associated vector of (K_1^*, K_2^*) . If $Y_2^* = (y_{m-m_1}^*, y_{m-m_1+1}^*, \cdots, y_{m-1}^*)$, then we have $\tilde{\mathbf{F}}_G(Y_1^*) = 1$ and $\tilde{\mathbf{F}}_{G,i}[0](Y_1^*) = y_{m-m_1+i}^* + 1$ for $i \in [0, m_1 - 1]$.

r	n	k	$\mid m$	$\mid N$	$\mid n_1$	$\mid l$	$\mid T$	M	Gray Code	Exh.Search
5	129	129	43	4	$\begin{vmatrix} 9\\ 3 \end{vmatrix}$	$\left \begin{array}{c}7\\2\end{array}\right $	134.43 133.87	$\begin{array}{c} 86.46\\ \textbf{45.00} \end{array}$	136	146
5	192	192	64	4	$\left \begin{array}{c} /\\ 9\\ 9\\ 9\end{array}\right $	$\left \begin{array}{c} / \\ 7 \\ 4 \end{array}\right $	192 196.39 196.78	173 125.38 <mark>65.00</mark>	199	210
5	255	255	85	4	/ 15 15 15	$\left \begin{array}{c} /\\ 11\\ 6\end{array}\right $	$\begin{array}{c c} 251 \\ 256.74 \\ 258.92 \end{array}$	228 165.52 <mark>84.59</mark>	262	274
6	192	192	64	4	$\begin{vmatrix} 6\\ 6 \end{vmatrix}$	$\begin{vmatrix} 5\\ 3 \end{vmatrix}$	$\begin{array}{c c} 197.96 \\ 197.52 \end{array}$	$\begin{array}{c} 128.4\\ 65.59\end{array}$	199	211
6	255	255	85	4	$\begin{vmatrix} 12 \\ 9 \end{vmatrix}$	$\begin{vmatrix} 9\\4 \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$167.28 \\ 86.00$	262	275

- For difference enumeration attacks, we significantly push the security margin of difference instances of LowMC with partial nonlinear layers to 3/4 rounds.
- For the picnic setting, we drastically reduce the memory complexity for 5-/6-round LowMC instances with full nonlinear layers.
- The security evaluation of different instances of LowMC under extremely low data complexity has not yet come to an end.

Thanks for Your Attention!

sunyimeng@mail.sdu.edu.cn for any question!