Automatic Preimage Attack Framework on Ascon Using a Linearize-and-Guess Approach

Huina Li^{2,1}, Le He¹, Shiyao Chen^{3,1}, Jian Guo¹, Weidong Qiu²

1 Nanyang Technological University, Singapore, Singapore

2 Shanghai Jiao Tong University, Shanghai, China

3 Strategic Centre for Research in Privacy-Preserving Technologies and Systems, Nanyang Technological University, Singapore, Singapore

March 26, 2024

Table of contents

- Introduction
- 2 Preimage Attack Framework on ASCON-XOF
- Our Results
- 4 Bibliography

ASCON

- Designed by Dobraunig, Eichlseder, Mendel, Schläffer
- A family of lightweight cryptographic algorithms for AEAD(ASCON-128/ASCON-128a) and hashing functionality(ASCON-HASH/ASCON-XOF)
- NIST Lightweight Cryptography Standard (in February 2023)

Sponge¹-based Hashing

Figure: Hashing mode $\mathcal{X}_{h,r,a}$ in ASCON-HASH, ASCON-XOF

Name	Algorithm	Capacity <i>c</i>	Rate r
ASCON-HASH	$\mathcal{X}_{256,64,12}$	256	64
ASCON-XOF	$\mathcal{X}_{0,64,12}$ with arbitrary output length	256	64

¹Guido Bertoni et al. "Sponge functions". In: ECRYPT hash workshop. Vol. 2007. 9. 2007

Ascon Permutation

- p^a permutation is the underlying permutaion of Ascon-Hash and Ascon-Xof
- Let $\mathcal{A}[y][x]$, $0 \le y < 5$, $0 \le x < 64$ denote the bit in the 320-bit state \mathcal{A} .
- \mathcal{A} is split into five 64-bit registers words $\mathcal{A}[y][*]$.

- 12 rounds
- Each round consists of 3 operations, i.e., $R := p_L \circ p_S \circ p_C$

Round Function of ASCON

- p_C : $\mathcal{A}[2][*] \leftarrow \mathcal{A}[2][*] \oplus c_r$. No impacts on preimage attacks.
- p_5 : update the state \mathcal{A} with 64 parallel applications of the 5-bit S-box. The only Non-Linear operation.

Let $\mathcal{A}[*][i] = (a_{0i}, a_{1i}, \dots, a_{4i}), 0 \le i < 64$ denote the inputs in i—th S-box and the outputs are $(b_{0i}, b_{1i}, \dots, b_{i4})$. The ANF of the S-box layer p_S ,

$$b_{0,i} = a_{4,i}a_{1,i} \oplus a_{3,i} \oplus a_{2,i}a_{1,i} \oplus a_{2,i} \oplus a_{1,i}a_{0,i} \oplus a_{1,i} \oplus a_{0,i}$$

$$b_{1,i} = a_{4,i} \oplus a_{3,i}a_{2,i} \oplus a_{3,i}a_{1,i} \oplus a_{3,i} \oplus a_{2,i}a_{1,i} \oplus a_{2,i} \oplus a_{1,i} \oplus a_{0,i}$$

$$b_{2,i} = a_{4,i}a_{3,i} \oplus a_{4,i} \oplus a_{2,i} \oplus a_{1,i} \oplus 1$$

$$b_{3,i} = a_{4,i}a_{0,i} \oplus a_{4,i} \oplus a_{3,i}a_{0,i} \oplus a_{3,i} \oplus a_{2,i} \oplus a_{1,i} \oplus a_{0,i}$$

$$b_{4,i} = a_{4,i}a_{1,i} \oplus a_{4,i} \oplus a_{3,i} \oplus a_{1,i}a_{0,i} \oplus a_{1,i}$$

$$(1)$$

Round Function of ASCON

• p_L : provide diffusion within each 64-bit register word $\mathcal{A}[y][*]$.

$$\mathcal{A}[0][*] \leftarrow \mathcal{A}[0][*] \oplus (\mathcal{A}[0][*] \gg 19) \oplus (\mathcal{A}[0][*] \gg 28)
\mathcal{A}[1][*] \leftarrow \mathcal{A}[1][*] \oplus (\mathcal{A}[1][*] \gg 61) \oplus (\mathcal{A}[1][*] \gg 39)
\mathcal{A}[2][*] \leftarrow \mathcal{A}[2][*] \oplus (\mathcal{A}[2][*] \gg 1) \oplus (\mathcal{A}[2][*] \gg 6)
\mathcal{A}[3][*] \leftarrow \mathcal{A}[3][*] \oplus (\mathcal{A}[3][*] \gg 10) \oplus (\mathcal{A}[3][*] \gg 17)
\mathcal{A}[4][*] \leftarrow \mathcal{A}[4][*] \oplus (\mathcal{A}[4][*] \gg 7) \oplus (\mathcal{A}[4][*] \gg 41)$$

Preimage Resistance

What we are looking at...?

Given H, find a preimage M such that Hash(M, IV) = H equals to solving an algebraic polynomial system.

For one hash function with h-bit hash value.

- Brute-force: 2^h time complexity in average
- Preimage Attack: Find a technique that is faster than brute-force.

Summary of Techniques in Preimage Attack against Sponge-based Hashing

Target	Technique	Max. Rounds	Reference
Keccak challenges	SAT	2	[MS13]
Keccak-224/256	Linear structure	4/4	[GLS16]
Keccak-224/256	${\sf Linear\ structure\ +\ Allocating\ model(Lin.s.A.m)}$	4/4	[LS19]
Keccak-224/256	Lin.s.A.m + Partial linearization	4/4	[HLY21]
Keccak-384/512	Non-linear structure	4/3	[Raj19]
Keccak-384/512	Non-Lin.s.A.m $+$ Relinearization	4/3	[LIMY20]
Keccak-384/512	Non-Lin.s.A.m $+$ Relinearization $+$ Extra linear dependence	3/3	[HLY23]
Keccak-512	$MitM + Linear \ structure + MILP$	4	[QHDYW23]
Keccak-384/512	$MitM + Weak ext{-diffusion structure} + MILP$	4	[QZHDW23]
Ascon-Xof	Algebraic(without c_r and IV)	2	[DEMS19]
Ascon-Xof	$MitM + Weak ext{-diffusion structure} + MILP$	4	[QZHDW23]
Ascon-Xof	$MitM + Weak ext{-diffusion structure} + SAT$	4	[DDLS24]
Ascon-Xof	Non-Lin.s.A.m $+$ SAT	4	Our

We extend the preimage attack framework on ${\rm Keccak}$ to ${\rm Ascon}$ with the help of SAT tools.

Linear Structure²

• Given a 1.5-round linear structure (after 2-round entire linearization) by manually designing.

Figure: 1.5-round linear structure with 256 degrees of freedom used in preimage attack on 2-round Keccak-384

² Jian Guo, Meicheng Liu, and Ling Song. "Linear structures: applications to cryptanalysis of round-reduced Keccak". In: *ASIACRYPT 2016*. Springer. 2016, pp. 249–274

Main Idea of Linear Structure

- Construct a system of m linear equations leaked by the hash value in n free variable bits, assume $n \ge m$, then the system has a non-trivial solution.
- For one hash function with h-bit hash value.

$$\begin{cases}
f_0(x_0, x_1, \dots, x_{n-1}) \oplus c_0 = h_0 \\
f_1(x_0, x_1, \dots, x_{n-1}) \oplus c_1 = h_1 \\
\dots \\
f_{m-1}(x_0, x_1, \dots, x_{n-1}) \oplus c_{n-1} = h_{m-1}
\end{cases}$$
(3)

- total gain: 2^m
- matching probability of one guess: 2^{m-h}
- total complexity of finding a preimage: 2^{h-m} guesses

Linear Structure with the Allocating Model³⁴

- Extend to a longer 2.5-round linear structure via an allocating model.
 - Find an inner part that satisfies certain conditions for the initial state of the linear structure, 2^d_1 .
 - Construct the algebraic systems according to the linear structure and then solve these systems for finding a multi-block preimage, 2^{h-m}
- Search complexity of finding this restricted inner part: $2^{d_1} = 2^{128}$.
- $n = 64, n \ge m \Rightarrow m = 64$
- Random space of linear structure: $2^{d_r} = 2^{256}$
- Final complexity:

³Ting Li and Yao Sun. "Preimage attacks on round-reduced Keccak-224/256 via an allocating approach".

Table of contents

- Introduction
- 2 Preimage Attack Framework on ASCON-XOF
- Our Results
- 4 Bibliography

Hard to Design a Structure manually

- small rate
- the linear duffision layer is highly flexible (independently shift each row)
- ullet the non-linear layer is more complex than Keccak

Overview of Framework

- **1** Optimal Structures $S_{d_0,d_{\epsilon}}^n$ Search Stage
- ② Validity of Optimal Structures Verification Stage: $d_r \ge d_1$ holds?
- Construct a system of d_e linear equations in d_f free variable bits $(d_f \geq d_e)$, then the system has a non-trivial solution.
- Final Complexity Computation Stage:

$$2^{h-d_e}$$

Automatic Optimal Structure Search Model

$$A_{x,y}^0 \xrightarrow{p_S \circ p_C} B_{x,y}^0 \xrightarrow{p_L} A_{x,y}^1 \xrightarrow{p_S \circ p_C} B_{x,y}^1 \xrightarrow{p_L} A_{x,y}^2 \xrightarrow{p_S \circ p_C} B_{x,y}^2 \xrightarrow{p_L} A_{x,y}^3 \xrightarrow{p_S \circ p_C} B_{x,y}^3 \xleftarrow{p_L^{-1}} A_{x,y}^4$$

3-round Structure -> 1-round LC + 1-round LCQ + 1-round LQ

Figure: 3-round Quartic Structure used in 4-round Preimage Attack

- Modeling the bit propagation
 - Modeling the Substitution Layer p_S
 - Modeling the Linear Layer p_L
- Modeling the matching hash bit
- Modeling extra condition
 - Modeling the initial state
 - Modeling the objective functions

Modeling the Initial State

- Separate all state bits into three types: linear bits (v), constant bits(c), unknown bits(q).
- In the initial state A^0 :
 - constant bits are fixed constants, including the padding bit
 - linear bits only exist in the outer part

Diffusion of Linear Bits through the last p_S

Figure: The propagation of the last round in 4-round quartic structure

• For 5-bit inputs of each sbox (a_0, a_1, \ldots, a_4) , the output bit b_0 is known(recovered from hash bit by p_I^{-1})

$$b_0 = a_4 a_1 \oplus a_3 \oplus a_2 a_1 \oplus a_2 \oplus a_1 a_0 \oplus a_1 \oplus a_0 \tag{4}$$

Generate Guess Linear Equations leaked by the Hash Value

Observation 1

If the algebraic degrees of a_3 , a_2 , a_0 are at most 1, then the guess linear equation $a_3 \oplus a_2 \oplus a_0 = b_0$ holds with a probability of $\frac{3}{4}$ when 5 input bits are uniformly distributed.

$$b_0 = a_4 a_1 \oplus a_3 \oplus a_2 a_1 \oplus a_2 \oplus a_1 a_0 \oplus a_1 \oplus a_0$$

= $(a_4 \oplus a_2 \oplus a_0 \oplus 1)a_1 \oplus a_3 \oplus a_2 \oplus a_0$

Note that the quadratic term $(a_4 \oplus a_2 \oplus a_0 \oplus 1)a_1 = 0$ holds in fact with a probability of $\frac{3}{4}$. Thus, one linear equation $a_3 \oplus a_2 \oplus a_0 = b_0$ can be obtained by excluding the quadratic term, which can still bring a gain of $\frac{3}{4}/\frac{1}{2} \approx 2^{0.585}$.

Modeling the Matching Hash Bit($A^{n-1} \rightarrow B^{n-1}[0]$)

Figure: The propagation of the last round in 4-round quartic structure

For each column (sbox), if $A^2[0][i]$, $A^2[2][i]$, $A^2[3][i]$ ($0 \le i < 64$), are all linear bits or constant bits, we say there is a 1-bit hash matching, and one guess linear equation is constructed with a probability of $\frac{3}{4}$.

Additionally, we introduce 64 variables, denoted by E_i , $0 \le i < 64$ for $A^2[\star][i]$ to indicate which column matches successfully, if $E_i = 1$ means there is a 1-bit hash matching; otherwise, $E_i = 0$.

Objective Function

• our objective is to maximize the number of guess linear equations d_e where d_f is the number of free linear bits(degrees of freedom).

$$\begin{cases} d_f = \sum A_{0,x}^0 \\ Maximize : \quad d_e = \sum E_x \end{cases}$$
 (5)

Diffusion of Linear Bits through the first $p_S(A^0 \to B^0)$

 Adding some specific conditions imposed on the inputs of sbox that can significantly control the diffusion of linear bits.

• $b_2 = a_4 a_3 \oplus a_4 \oplus a_2 \oplus a_1 \oplus 1$ must be a constant bit

Diffusion of Linear Bits through the second $p_S(A^1 \rightarrow B^1)$

• Due to the independent calculation of p_L within each row, the third input bit a_2 of the second p_S must be a constant bit.

Inputs	Outputs	Condition	Inputs	Outputs	Condition
cccc	ccccc	-	vcccc	VVCCC	$a_1 = 0$; $a_3 + a_4 = 1$
vcccc	CVCCV	$a_1 = 0$; $a_3 + a_4 = 1$	cvccc	CCVVC	$a_2 = 0$; $a_3 = 1$; $a_0 + a_4 = 1$
ccccv	CVCCV	$a_0 = 1$; $a_1 = 0$; $a_3 = 1$	ccccv	VVCCC	$a_0=1$; $a_1=1$; $a_3=1$
vvccc	qvvvq	-	CVCCV	qvvvq	-

Diffusion of Linear Bits through the third $p_S(A^2 \rightarrow B^2)$

- Due to the independent calculation of p_L within each row, unknown bits ('q') only exist in the first row and the last row of A^2 .
- Suppose one 5-bit inputs of *i*-th sbox $A^2[*][i] = (a_0, a_1, a_2, a_3, a_4)$, the outputs $B^2[*][i] = (b_0, b_1, b_2, b_3, b_4)$

$$b_2 = a_4 a_3 \oplus a_4 \oplus a_2 \oplus a_1 \oplus 1$$

$$b_0 = a_4 a_1 \oplus a_3 \oplus a_2 a_1 \oplus a_2 \oplus a_1 a_0 \oplus a_1 \oplus a_0$$

if any single unknown bit is among a_1 , a_2 , or a_3 , then one of b_3 , b_2 , b_0 must be an unknown bit.

• Due to the independent calculation of p_L within each row, unknown bits ('q') must exist in the first row, the third row and the last row of A^3 . (Too Bad! we miss at least 1-bit hash matching)

Table of contents

- 1 Introduction
- 2 Preimage Attack Framework on ASCON-XOF
- Our Results
- 4 Bibliography

Improved 3-round Preimage Attacks using 5513 Optimal Structures $\mathcal{S}^2_{27,27}$

- Random space: $2^{d_r} = 2^{36}$
- $d_r > d_1$ holds
- Complexity(guesses):

$$2^{128-0.585d_e}=2^{112.205}$$

Our Preimage Attacks on Ascon-Xof

Table 1: Summary of preimage attacks on ASCON-XOF. Hash: the length of the digest in bits. Size: the number of linear equations leaked by the hash value. Guesses: the number of required solutions. Solving Time: the average complexity of obtaining a single solution.

Round	Hash	Size	Guesses	Solving Time†	Final Time	Memory	Reference
2	64	25	2^{39}	$2^{-0.04}$	2^{39}	-	[DEMS19]
2	04	64	$2^{27.56}$	2^4	$2^{31.56}$	-	Section 3
		-	-	-	$2^{120.58}$	2^{39}	[QHD+23]
3	128	-	-	-	$2^{114.53}$	2^{30}	$[QZH^+23]$
		27	$2^{112.205}$	$2^{-0.29}$	$2^{112.205}$	-	Section 5
		-	-	-	$2^{126.4}$	2^{45}	[QHD ⁺ 23]
4	128	-	-	-	$2^{124.67}$	2^{50}	$[QZH^+23]$
		6	$2^{124.49}$	$2^{-1.01}$	$2^{124.49}$	-	Section 6

†Here 'Solving Time' is determined by the ratio of the number of bit operations required for one Gaussian Elimination turn to the number of bit operations in round-reduced ASCON

Table of contents

- Introduction
- 2 Preimage Attack Framework on ASCON-XOF
- Our Results
- 4 Bibliography

Bibliography I

- Bertoni, Guido et al. "Sponge functions". In: ECRYPT hash workshop. Vol. 2007. 9. 2007.
- Guo, Jian, Meicheng Liu, and Ling Song. "Linear structures: applications to cryptanalysis of round-reduced Keccak". In: *ASIACRYPT 2016*. Springer. 2016, pp. 249–274.
- He, Le et al. *Improved Preimage Attacks on Round-Reduced Keccak-384/512*. Cryptology ePrint Archive, Paper 2022/788. 2022.
- Li, Ting and Yao Sun. "Preimage attacks on round-reduced Keccak-224/256 via an allocating approach". In: *EUROCRYPT 2019*.