QARMAv2

<u>Roberto Avanzi</u>, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder Shibam Ghosh, Marcel Nageler, and Francesco Regazzoni Arm, CRI, Universities of Amsterdam, Graz, Haifa, Lugano

arm

Introduction

What is QARMAv2?

QARMAv2 is a revision of the Tweakable Block Cipher QARMAv1 from FSE 2017 to improve its security and allow for longer tweaks, while keeping latency and area similar.

Like QARMAv1, it is in the public domain, no IPR exerted on any component of it by any party that worked on the design!

Why QARMAv2?

I mean, QARMAv1 looks fine, so why update it?

Ciphor	Rounds Attacked	Outer Whitening?	Attack Complexity			Tochniquo	Pof
Cipiter			Time	Data	Memory	recinique	Nei.
64	4 + 6	Ν	2 ¹¹⁶ + 2 ^{70.1}	2 ⁵³ CP	2 ¹¹⁶	МІТМ	[ZD16]
64	4 + 4	Y	2 ³³ + 2 ⁹⁰	2 ¹⁶ CP	2 ⁹⁰	MITM	[LJ18]
64	4 + 5	Y	2 ⁴⁸ + 2 ⁸⁹	2 ¹⁶ CP	2 ⁸⁹	MITM	[LJ18]
64	4 + 6	Y	2 ⁵⁹	2 ⁵⁹ KP	2 ^{29.6} bits	Rel-tweak stat. sat.	[LHW19]
64	4 + 7	Y	2 ^{120.4}	2 ⁶¹ CP	2 ¹¹⁶	Trunc. imp. diff.	[YQC18]
64	3 + 8	Y	2 ^{64.4} + 2 ⁸⁰	2 ⁶¹ CP	2 ⁶¹	Imp. diff.	[ZDW18]
64	5 + 6	Y	2 ^{111.16}	2 ^{34.26} CP	2 ¹⁰⁸	Rel-tweak trunc. diff.	[SII23]
64	4 + 8	Y	2 ^{66.2}	2 ^{48.4} CP	2 ^{53.70}	Zero corr./Integral	[ADG ⁺ 19]
128	4 + 6	N	$2^{232} + 2^{141.7}$	2 ¹⁰⁵ CP	2 ²³²	МІТМ	[ZD16]
128*	4 + 6	Y	2 ^{237.3}	2 ¹²² CP	2 ¹⁴⁴	Trunc. imp. diff.	[YQC18]
128	2 + 8	Y	2 ^{120.94}	2 ^{104.02} CP	2 ^{94.50}	Rel-tweak Imp. Diff.	[DuWLW22]
128*	4 + 7	Y	2 ^{241.8}	2 ¹²² CP	2 ²³²	Trunc. imp. diff.	[YQC18]
128	4 + 7	Y	2 ^{126.1}	2 ^{126.1} KP	2 ⁷¹ bits	Rel-tweak stat. sat.	[LHW19]
128	8 + 3	Y	2 ^{104.60}	2 ^{124.05} CP	2 ⁴⁸	Rel-tweak trunc. diff.	[SII23]
128	9 + 4	Y	2 ^{238.02}	2 ^{106.63} CP	2 ²⁴⁰	Rel-tweak trunc. diff.	[SII23]

Why QARMAv2?

Not a whim or just to papers++:

During the last seven years we achieved a better understanding of block cipher design, and of the requirements coming from practical applications.

- Longer tweaks to address use cases and for better security.
- Revised components to improve security.

Why QARMAv2?

Not a whim or just to papers++:

During the last seven years we achieved a better understanding of block cipher design, and of the requirements coming from practical applications.

- Longer tweaks to address use cases and for better security.
- Revised components to improve security.

In a nutshell: 1) More flexible inputs...

- QARMAv2-64-128: 64-bit block size and 128 bit key, and tweaks up to 128 bits (up from 64 bits)
- QARMAv2-128-s: 128-bit block size and s bit key, with s = 128, 192 or 256, and tweaks up to 256 bits (up from 128 bits)

In a nutshell: 2) Security bounds...

To align with common requirements from NIST and other SDOs we want to move from the tradeoff definition of security

Time × Memory
$$\geq 2^{128-\varepsilon}$$
 or $2^{256-\varepsilon}$

of PRINCE, MANTIS, QARMAv1, etc... to

if Memory $\leq 2^{56 \text{ resp. 80}}$, then Time $\geq 2^{\text{key size}}$

similarly to PRINCEv2.

In a nutshell: 2) Security bounds...

To align with common requirements from NIST and other SDOs we want to move from the tradeoff definition of security

Time × Memory
$$\geq 2^{128-\varepsilon}$$
 or $2^{256-\varepsilon}$

of PRINCE, MANTIS, QARMAv1, etc... to

if Memory $\leq 2^{56 \text{ resp. 80}}$, then Time $\geq 2^{\text{key size}}$

similarly to PRINCEv2.

Security Considerations

- AES with a 128-bit block in a XEX construction and a 128-bit block, 128-bit tweak TBC like QARMAv1-128 have something in common. Syntetic or random IVs do not work well: Collision after O(2⁶⁴) messages. Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.
- One solution is to use longer blocks.

However, a 256-bit wide cipher can be heavier than a 128-bit cipher.

- AES with a 128-bit block in a XEX construction and a 128-bit block, 128-bit tweak TBC like QARMAv1-128 have something in common.
 Syntetic or random IVs do not work well: Collision after O(2⁶⁴) messages.
 Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.
- One solution is to use longer blocks.

However, a 256-bit wide cipher can be heavier than a 128-bit cipher.

- AES with a 128-bit block in a XEX construction and a 128-bit block, 128-bit tweak TBC like QARMAv1-128 have something in common.
 Syntetic or random IVs do not work well: Collision after O(2⁶⁴) messages.
 Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.
- One solution is to use longer blocks.
- Remark: a 128-bit block cipher with 256-bit tweaks may define a space of 2²⁵⁶ permutations for each value of the key.

So, for Cryptographic Memory Encryption, we can have 64-bit counters, 64-bit addresses, 64 bits of "realm identity," and room to spare.

• For embedded: 64-bit blocks, and 128-bit keys and tweaks should be ok.

- AES with a 128-bit block in a XEX construction and a 128-bit block, 128-bit tweak TBC like QARMAv1-128 have something in common.
 Syntetic or random IVs do not work well: Collision after O(2⁶⁴) messages.
 Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.
- One solution is to use longer blocks.
- Remark: a 128-bit block cipher with 256-bit tweaks may define a space of 2²⁵⁶ permutations for each value of the key.

So, for Cryptographic Memory Encryption, we can have 64-bit counters, 64-bit addresses, 64 bits of "realm identity," and room to spare.

• For embedded: 64-bit blocks, and 128-bit keys and tweaks should be ok.

- With a TBC, key changed infrequently. We do not consider related-key attacks.
- Tweak changes often, Adversary may control it. Consider related-tweak attacks.
- So, we do not consider a "tweakey", but rather tweak and key separately.
- We move from Even-Mansour to an Alternating-Key Schedule because:
- Security bounds are better and more "normal" (as already seen).
- OTOH longer tweak \Rightarrow the adversary has more control.
- Hence, we may need more rounds if we kept the Even-Mansour scheme.
- Better key/tweak schedule may help offset this.

- With a TBC, key changed infrequently. We do not consider related-key attacks.
- Tweak changes often, Adversary may control it. Consider related-tweak attacks.
- So, we do not consider a "tweakey", but rather tweak and key separately.
- We move from Even-Mansour to an Alternating-Key Schedule because:
- Security bounds are better and more "normal" (as already seen).
- OTOH longer tweak \Rightarrow the adversary has more control.
- Hence, we may need more rounds if we kept the Even-Mansour scheme.
- Better key/tweak schedule may help offset this.

- With a TBC, key changed infrequently. We do not consider related-key attacks.
- Tweak changes often, Adversary may control it. Consider related-tweak attacks.
- So, we do not consider a "tweakey", but rather tweak and key separately.
- We move from Even-Mansour to an Alternating-Key Schedule because:
- Security bounds are better and more "normal" (as already seen).
- OTOH longer tweak \Rightarrow the adversary has more control.
- Hence, we may need more rounds if we kept the Even-Mansour scheme.
- Better key/tweak schedule may help offset this.

- With a TBC, key changed infrequently. We do not consider related-key attacks.
- Tweak changes often, Adversary may control it. Consider related-tweak attacks.
- So, we do not consider a "tweakey", but rather tweak and key separately.
- We move from Even-Mansour to an Alternating-Key Schedule because:
- Security bounds are better and more "normal" (as already seen).
- OTOH longer tweak \Rightarrow the adversary has more control.
- Hence, we may need more rounds if we kept the Even-Mansour scheme.
- Better key/tweak schedule may help offset this.

- With a TBC, key changed infrequently. We do not consider related-key attacks.
- Tweak changes often, Adversary may control it. Consider related-tweak attacks.
- So, we do not consider a "tweakey", but rather tweak and key separately.
- We move from Even-Mansour to an Alternating-Key Schedule because:
- Security bounds are better and more "normal" (as already seen).
- OTOH longer tweak \Rightarrow the adversary has more control.
- Hence, we may need more rounds if we kept the Even-Mansour scheme.
- Better key/tweak schedule may help offset this.

Design

Overall Scheme

Overall Scheme: Keep the Reflector Construction

Use the same circuit for both encryption and decryption with a minor set-up step.

The function *F* is a keyed and tweaked iterated cipher with round function *R*. A bar over a function denotes its inverse, for instance $\bar{R} = R^{-1}$.

Building Blocks

The State

The internal state of the cipher has a size of *b* bits.

A *b*-bit value is called a *block*. It is as a three-dimensional array, consisting of ℓ layers, with $\ell \in \{1, 2\}$.

A layer is an array of 16 elements, and also a 4 by 4 matrix of 4-bit *cells*:

$$L = c_0 \|c_1\| \cdots \|c_{14}\| \|c_{15} = \begin{pmatrix} c_0 & c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 & c_7 \\ c_8 & c_9 & c_{10} & c_{11} \\ c_{12} & c_{13} & c_{14} & c_{15} \end{pmatrix}$$

Thus, *b* = 64 *l*.

Both key and tweak have a size of 2b = 128 bits.

.

The Round Function and the Reflector

A full round is

where $R = S \circ M \circ \tau$, and X swaps the first two rows between the two layers (for $\ell = 2$ only). τ is the same cell shuffle used in MIDORI, MANTIS, and QARMAv1. The reflector is

where k_0 , k_1 are two round keys.

19 © ARM 2024

The State (Cellwise) Shuffle

The MIDORI state shuffle

 $\tau = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2]$

acts on each layer cellwise as follows

$$L = \begin{pmatrix} c_0 & c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 & c_7 \\ c_8 & c_9 & c_{10} & c_{11} \\ c_{12} & c_{13} & c_{14} & c_{15} \end{pmatrix} \xrightarrow{\tau} \begin{pmatrix} c_0 & c_{11} & c_6 & c_{13} \\ c_{10} & c_1 & c_{12} & c_7 \\ c_5 & c_{14} & c_3 & c_8 \\ c_{15} & c_4 & c_9 & c_2 \end{pmatrix} = \tau(L) \ .$$

The Diffusion Matrix

Let ρ denote the cyclic rotation to the left of the four bits in a cell, i.e.,

$$\rho(\mathbf{x}) = \rho((x_3, x_2, x_1, x_0)) = \mathbf{x} \lll 1 = (x_2, x_1, x_0, x_3) \ .$$

 ρ is linear, and ρ^4 = identity. The diffusion matrix *M* is the circulant

$$M := M_{4,1} = \operatorname{circ}(0, \rho, \rho^2, \rho^3) = \begin{pmatrix} 0 & \rho & \rho^2 & \rho^3 \\ \rho^3 & 0 & \rho & \rho^2 \\ \rho^2 & \rho^3 & 0 & \rho \\ \rho & \rho^2 & \rho^3 & 0 \end{pmatrix}$$

Involutory Almost-MDS, like MIDORI's circ(0, 1, 1, 1) and QARMAv1's circ(0, ρ , ρ^2 , ρ).

٠

The S-Box

For the general-purpose versions of QARMAv2, we use the following S-Box

$$P = \begin{bmatrix} 4 7 9 B C 6 E F 0 5 1 D 8 3 2 A \end{bmatrix}$$
.

(For PAC we allow the use of QARMAv1's σ_0 .)

The road that led to the choice of S-Boxes has been bumpy.

We changed S-Box because Tim Beyne found some invariants if the new matrix is used with the old S-Box. (The TL;DR is: stricter filtering in S-Box search + new analysis of propagation of affine subspaces.)

We observe that if we use a fixed permutation to modify the tweak, by continuing with the same transformation through the reflector we are sort of implying that in an attack the schedule must "work well" with the function F and its inverse.

Hence, we define

$$\left[\,T_1,\,\varphi^{r-1}(T_0),\,\varphi(T_1),\,\varphi^{r-2}(T_0),\,\varphi^2(T_1),\,\varphi^{r-3}(T_0),\,\dots\,,\,\varphi^{r-1}(T_1),\,T_0\,\right]\,.$$

Swapping T_0 with T_1 gives the inverse schedule. (Some symmetry necessary to allow easy setup.)

We "just" need to find a suitable φ .

QARMAv2 Encryption (odd r)

QARMAv2 Decryption (odd r): using the same circuit

Security

Cryptanalysis
Estimated reach of various types of cryptanalysis

	QARMAV	2-64	QARMAv2-128		
Attack	Parameter r	Rounds	Parameter <i>r</i>	Rounds	
Differential	6 (5)	14 (12)	9 (8)	20 (18)	
Boomerang (Sandwich)	7 (5)	16 (12)	10 (8)	22 (18)	
Linear	5	12	7	16	
Impossible-Differential	3	8	4	10	
Zero-Correlation	3	8	4	10	
Integral (Division Property)*	-	5	_	-	
Meet-in-the-Middle	-	10	-	12	
Invariant Subspaces	-	5	-	6	
Algebraic (Quadratic Equations)	-	6	-	7	

Values are for two independent tweak blocks, except numbers in parentheses, which are specific for a single block tweak, stretched. * Integral has been recently extended to 10, rep. 11 rounds.

Security claims and parameter choices

		•				
Variant	Block Size	Key Size	Time	Data	Parameter	Rounds
QARMAv2-64-128	64 bits	128 bits	2 ^{128-ε}	2 ⁵⁶	r = 9	20
QARMAv2-128-128	128 bits	128 bits	2 ^{128-ε}	2 ⁸⁰	<i>r</i> = 11	24
QARMAv2-128-192	128 bits	192 bits	$2^{192-\epsilon}$	2 ⁸⁰	<i>r</i> = 13	28
QARMAv2-128-256	128 bits	256 bits	$2^{256-\epsilon}$	2 ⁸⁰	<i>r</i> = 15	32

With two independent tweak blocks.

- A goal was to **not** increase the number of rounds.
- This was not achieved for QARMAv2-64.
- The reason is: Boomerang attacks.

Security claims and parameter choices

		•				
Variant	Block Size	Key Size	Time	Data	Parameter	Rounds
QARMAv2-64-128	64 bits	128 bits	$2^{128-\varepsilon}$	2 ⁵⁶	r = 9	20
QARMAv2-128-128	128 bits	128 bits	2 ^{128-ε}	2 ⁸⁰	<i>r</i> = 11	24
QARMAv2-128-192	128 bits	192 bits	$2^{192-\epsilon}$	2 ⁸⁰	<i>r</i> = 13	28
QARMAv2-128-256	128 bits	256 bits	$2^{256-\epsilon}$	2 ⁸⁰	<i>r</i> = 15	32

With two independent tweak blocks.

- A goal was to **not** increase the number of rounds.
- This was not achieved for QARMAv2-64.
- The reason is: Boomerang attacks.

Focus 1: Finding better tweak schedules

Use avoidance of self-cancellations as a starting point, then fine-tune.

First consider τ^2 . Then apply row permutations and an additional swap involving non affected cells to get maximal cyclic order 16.

And then active S-Box counts (cell-wise MILP model)

QARMAV2									
	r =	2	3	4	5	6	7		
ł	Rounds =	6	8	10	12	14	16		
1	RT Diff.	5	12	24	32	41	52		
-	Linear	5	32	50	64	72	-		
2	RT Diff.	5	16	32	52	61	-		
~	Linear	24	44	56	80	96	-		
QARMAv1									
1	RT Diff.	6	14	24	32	42	52		

And then active S-Box counts (cell-wise MILP model)

QARMAv2									
	r =	2	3	4	5	6	7		
ł	Rounds =	6	8	10	12	14	16		
1	RT Diff.	5	12	24	32	41	52		
	Linear	5	32	50	64	72	-		
2	RT Diff.	5	16	32	52	61	-		
2	Linear	24	44	56	80	96	-		
QARMAv1									
1	RT Diff.	6	14	24	32	42	52		

And then active S-Box counts (cell-wise MILP model)

QARMAv2									
	r =	2	3	4	5	6	7		
ł	Rounds =	6	8	10	12	14	16		
1	RT Diff.	5	12	24	32	41	52		
-	Linear	5	32	50	64	72	-		
2	RT Diff.	5	16	32	52	61	_		
~	Linear	24	44	56	80	96	-		
QARMAv1									
1	RT Diff.	6	14	24	32	42	52		

Remark on the new schedules

- If you want to keep using QARMAv1, update it with the new key schedule.
- All the cryptanalysis on QARMAv1 should still apply, likely with no smaller complexity.
- If you like the new tweak schedule, go to QARMAv2.

Focus 2: Implementation

Implementations (5 nm TSMC, low voltage)

	ds s		ds °			Area optimized			Latency optimized			
	nno	ieal		r Ar	rea 🗆	Delay	- Ai	rea 🗆	Delay			
Cipher	Ro	μŢ	Security Claims	μm²	GE	ps	μm²	GE	ps			
PRESENT-128	31	Ν	$D \geq 2^{64} \parallel T \geq 2^{128}$	848.8	10636	1841	1824.1	22858	958			
PRINCE	12	Ν	$D \times T \ge 2^{126}$	334.6	4193	710	672.1	8422	534			
MANTIS-6	14	Υ	$D \times T \ge 2^{126}$	425.4	5331	734	715.8	8969	592			
MANTIS-7	16	Υ	$D \times T \ge 2^{126}$	485.6	6085	854	788.4	9879	683			
BIPBIP-Dec (i.e. <i>b</i> = 24, t = 40)	11	Υ	$T \gtrsim 2^{72} \parallel D \gtrsim 2^{72} \parallel TD \gtrsim 2^{96}$	303.7	3806	647	381.1	4776	436			
BIPBIP-Enc (i.e. <i>b</i> = 24, t = 40)	11	Υ	(same)	514.7	6450	1480	1090.3	13662	909			
QARMAv1-64- σ_0 (r = 3, PAC, t = 64)	8	Y	$CP \ge 2^{20}, KP \ge 2^{40}$	251.2	3147	464	450.0	5638	334			
QARMAv1-64- σ_0 (r = 5, PAC, t = 64)	12	Υ	$CP \ge 2^{30}, KP \ge 2^{40}$	394.7	4946	728	707.0	8860	525			
QARMAv1-64 ($r = 7, t = 64$)	16	Υ	$D \times T \ge 2^{126}$	551.7	6913	1030	996.6	12489	731			
QARMAv2-64- σ_0 (r = 4, PAC \leq 10 bits)	10	Υ	T ≈ 2 ¹²⁸	309.7	3881	606	495.9	6214	430			
QARMAv2-64- σ_0 (r = 5, PAC \leq 24 bits)	12	Υ	<i>T</i> ≈ 2 ¹²⁸	374.6	4694	721	600.8	7529	514			
QARMAv2-64 (r = 7, t = 64)	16	Υ	$D \geq 2^{56} \parallel T \geq 2^{128}$	537.0	6729	936	954.4	11959	706			
QARMAv2-64 (r = 9, t = 128)	20	Υ	$D \ge 2^{56} \parallel T \ge 2^{128}$	675.2	8461	1173	1187.3	14879	885			

 $\mathfrak{k}, \mathfrak{t}$ = size of key, resp. tweak in bits.
Implementations (5 nm TSMC, low voltage)

	Js	eak		Area optimized			Late	Latency optimized		
	nno			🖵 Area 🗔		Delay	- A	r Area n		
Cipher	Ro	Μ	Security Claims	μm^2	GE	ps	μm²	GE	ps	
AES-128	10	Ν	$D \geq 2^{128} \parallel T \geq 2^{128}$	2304.1	28873	3064	4520.6	56648	1791	
AES-256	14	Ν	$D \ge 2^{128} \parallel T \ge 2^{128}$	3238.7	40585	4290	6191.5	77587	2513	
MIDORI-128	20	Ν	$D \geq 2^{128} \parallel T \geq 2^{128}$	1085.1	13597	1156	1954.5	24492	840	
ASCON- p^{12} (note: <i>b</i> = 320)	12	Ν	$D \ge 2^{64} \parallel T \ge 2^{128}$	2228.3	27923	826	2766.8	34671	507	
SPEEDY-5 (note: <i>b</i> = 192)	5	Ν	$D \ge 2^{64} \parallel T \ge 2^{128}$	1571.8	18567	650	2668.0	33433	384	
SPEEDY-6 (note: <i>b</i> = 192)	6	Ν	$D \geq 2^{128} \parallel T \geq 2^{128}$	1795.5	22499	787	3133.8	39270	468	
SKINNY-128-128 (i.e. # + t = 128)	40	Υ	$D \ge 2^{88.5}$ (†)	3986.3	49953	4371	9241.0	115800	2164	
SKINNY-128-384 (i.e. $t + t = 384$)	40	Υ	$D \ge 2^{88.5}$ (†)	4513.6	56560	4348	9527.5	11939	2177	
QARMAv1-128 (r = 9, t = 128)	20	Y	$D \times T \ge 2^{254}$ (‡)	1422.3	17823	1290	2535.8	31776	912	
QARMAv1-128 (r = 11, t = 128)	24	Υ	$D \times T \ge 2^{254}$	1635.6	20496	1561	3078.3	38575	1091	
QARMAv2-128-128 (r = 9, t = 128)	20	Y	$D \geq 2^{80} \parallel T \geq 2^{128}$	1347.5	16886	1170	2337.5	29292	890	
QARMAv2-128-128 (r = 11, t = 256)	24	Υ	$D \ge 2^{80} \parallel T \ge 2^{128}$	1620.3	20305	1409	2875.8	36037	1068	
QARMAv2-128-256 (r = 15, t = 256)	32	Υ	$D \geq 2^{80} \parallel T \geq 2^{256}$	2166.8	27152	1879	3797.8	47592	1425	

ŧ, ŧ = size of key, resp. tweak in bits.

(†) = inferred from original analysis. (‡) = Tweak masking suggested.

Final Words

See you at FSE 2031 for QARMAv3!!!

THANK YOU!

