Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing

Zhivu Zhang ^{1,3} Siwei Sun^{* 2} Caibing Wang ^{1,3,4} Lei Hu^{1,3}

¹ Institute of Information Engineering, CAS

² School of Cryptology, University of Chinese Academy of Sciences

³ School of Cyber Security, University of Chinese Academy of Sciences

⁴Beijing Electronic Science and Technology Institute

FSE 2024, March 29, 2024

Outline

[Meet-in-the-Middle Nostradamus Attacks](#page-16-0)

zhiyu Zhang, Siwei Sun et al. [MITM Nostradamus Attacks](#page-0-0) March 29, 2024 2/27

Outline

[The Generic Nostradamus Attack](#page-7-0)

3 [Meet-in-the-Middle Nostradamus Attacks](#page-16-0)

重工

 299

Mr. Nostradamus and his friends passed by a lottery shop in Leuven several days ago. He said to his friends: "I can predict the lottery numbers of March 27th, I have written them down in my diary. I won't show you my diary now, but I could tell you the hash value of it."

4. 0. 3.

Mr. Nostradamus and his friends passed by a lottery shop in Leuven several days ago. He said to his friends: "I can predict the lottery numbers of March 27th, I have written them down in my diary. I won't show you my diary now, but I could tell you the hash value of it."

Mr. Nostradamus sent a hash value τ to his friends.

4 0 K 4 @

After the winning numbers were announced, Mr. Nostradamus showed his diary D to his friend.

The first line of the diary is: "The lottery numbers of March 27th are 2 3 19 40 42 43 4." Which is exactly the same as the winning numbers. Furthermore, it could be verified that $H(D) = T$.

 $AB + B$

4 D F

After the winning numbers were announced, Mr. Nostradamus showed his diary D to his friend.

The first line of the diary is: "The lottery numbers of March 27th are 2 3 19 40 42 43 4." Which is exactly the same as the winning numbers. Furthermore, it could be verified that $H(D) = T$.

How did Mr. Nostradamus do that?

zhivu Zhang, Siwei Sun et al. [MITM Nostradamus Attacks](#page-0-0) March 29, 2024 5/27

 \mathbf{v} and \mathbf{v}

a milik 4 @

Outline

 \equiv

zhiyu Zhang, Siwei Sun et al. [MITM Nostradamus Attacks](#page-0-0) March 29, 2024 6/27

 2990

The Herding Attack [\[KK06\]](#page-33-0)

The chosen target forced prefix (CTFP) attack was first introduced by Kelsey and Kohno at EUROCRYPT 2006. They proposed the herding attack on iterated hash functions.

$$
\text{Attacker} \longrightarrow y \implies \boxed{\text{Attacker}} \longrightarrow P \implies \boxed{\text{Attacker}} \longrightarrow S, \text{ s.t. } H(P||S) = y
$$

The "Nostradamus attack" is the use of herding to commit to the hash of a message that the attacker doesn't even know.

The Herding Attack [\[KK06\]](#page-33-0)

The attack is divided into two phases:

- **1 Offline phase:** Construct a diamond structure.
- **2 Online phase:** Search for the link message.

 \leftarrow \leftarrow

4. 0. 3.

The Herding Attack [\[KK06\]](#page-33-0): Offline phase

Diamond structure: 2^k multi collisions

- Node $y_{i,j}$: the intermediate value of the Merkel-Damgård constructions.
- Edge $m_{i,j}$: the message block that links two intermediate value, $CF(y_{i,j}, m_{i,j}) = y_{i-1, \lceil j/2 \rceil}$
- Time complexity: $\mathcal{O}(2^{\frac{n+k}{2}})$. Memory complexity: $\mathcal{O}(2^k)$.

The Herding Attack [\[KK06\]](#page-33-0): Online phase

Once the prefix P is given, the attacker could exhaustive search for the link message, connecting the prefix with a leaf node.

Time complexity: $\mathcal{O}(2^{n-k})$. Memory complexity: $\mathcal{O}(2^k)$.

The Herding Attack [\[KK06\]](#page-33-0)

To minimize the time complexity of both phases, the optimal choice of k is $\frac{n}{3}$. Time complexity: $\mathcal{O}(\sqrt{n}\cdot 2^{2n/3})$. Memory complexity: $\mathcal{O}(2^{n/3})$.

The Quantum Nostradamus Attack

At ASIACRYPT 2022, Benedikt, Fischli, and Huppert [\[BFH22\]](#page-33-1) followed the classical herding attack and use Grover-based quantum algorithms to accelerate both offline and online phases.

4. 0. 3. 4 @

The Quantum Nostradamus Attack

At ASIACRYPT 2022, Benedikt, Fischli, and Huppert [\[BFH22\]](#page-33-1) followed the classical herding attack and use Grover-based quantum algorithms to accelerate both offline and online phases. At ASIACRYPT 2023, Dong et al. [\[Don+23\]](#page-33-2) proposed a quantum Nostradamus attack with little quantum memory.

The Quantum Nostradamus Attack

At ASIACRYPT 2022, Benedikt, Fischli, and Huppert [\[BFH22\]](#page-33-1) followed the classical herding attack and use Grover-based quantum algorithms to accelerate both offline and online phases. At ASIACRYPT 2023, Dong et al. [\[Don+23\]](#page-33-2) proposed a quantum Nostradamus attack with little quantum memory.

Table: The Generic Nostradamus Attacks

Outline

 \equiv 2990

An insight on the herding attack

The online phase of a herding attack can be viewed as a multi-target preimage attack.

zhiyu Zhang, Siwei Sun et al. [MITM Nostradamus Attacks](#page-0-0) March 29, 2024 14/27

The meet-in-the-middle attack is one of the most effective methods for attacking hash functions.

Figure: An overview of the meet-in-the-middle attack.

∍

Zhiyu Zhang, Siwei Sun et al. **[MITM Nostradamus Attacks](#page-0-0)** March 29, 2024 15/27

 $\mathbf{F}=\mathbf{F}$

Þ

 \overline{AB}

4. 0. 3.

zhiyu Zhang, Siwei Sun et al. [MITM Nostradamus Attacks](#page-0-0) March 29, 2024 16/27

MILP-based Methods

- First introduced by Bao et al. [\[Bao+21\]](#page-34-0) at EUROCRYPT 2021.
- Further researches were conducted in [\[Don+21;](#page-34-1) [SS22;](#page-34-2) [Bao+22;](#page-35-1) [Qin+23\]](#page-35-2).

4 0 K

MILP-based Methods

- First introduced by Bao et al. [\[Bao+21\]](#page-34-0) at EUROCRYPT 2021.
- Further researches were conducted in [\[Don+21;](#page-34-1) [SS22;](#page-34-2) [Bao+22;](#page-35-1) [Qin+23\]](#page-35-2).

The Quantum MITM Attack

- Proposed by Schrottenloher and Stevens [\[SS22\]](#page-34-2) at CRYPTO 2022.
- Could be be quadratically accelerated when choosing the parameters properly.

4. 0. 3. 4 @

MILP-based Methods

- First introduced by Bao et al. [\[Bao+21\]](#page-34-0) at EUROCRYPT 2021.
- Further researches were conducted in [\[Don+21;](#page-34-1) [SS22;](#page-34-2) [Bao+22;](#page-35-1) [Qin+23\]](#page-35-2).

The Quantum MITM Attack

- Proposed by Schrottenloher and Stevens [\[SS22\]](#page-34-2) at CRYPTO 2022.
- Could be be quadratically accelerated when choosing the parameters properly.

Attack Complexity (in log_2)

- Classical : $n min(d_B, d_R, d_M)$
- \bullet Quantum : $(n min(|d_B d_R|, d_B, d_R, d_M))/2$

The MITM Nostradamus Attack

The Meet-in-the-Middle Nostradamus Attack

- **Offline phase**: Construct a diamond structure utilizing the previous methods [\[KK06;](#page-33-0) [BFH22\]](#page-33-1).
- **Online phase**: Mount a meet-in-the-middle attack on the compression function to find a linking message.

The MITM Nostradamus Attack

Complexities

• Time complexity:

$$
\max\left(2^{n-\min(d_{\mathcal{B}},d_{\mathcal{R}},d_{\mathcal{M}})},\sqrt{k}\cdot 2^{(n+k)/2}\right),
$$

• Memory complexity:

$$
\max\left(2^k, min(2^{d_{\mathcal{B}}}, 2^{d_{\mathcal{R}}})\right).
$$

To perform a faster attack than the generic attack, we need (we omit the factor \sqrt{k} here.)

$$
k < \frac{n}{3} \text{ and } \min\left(d_{\mathcal{B}}, d_{\mathcal{R}}, d_{\mathcal{M}}\right) > \frac{n}{3}.
$$

Zhiyu Zhang, Siwei Sun et al. **[MITM Nostradamus Attacks](#page-0-0)** March 29, 2024 18/27

K ロ ト K 何 ト K ヨ ト K ヨ ト

 QQQ

D.

The Quantum MITM Nostradamus Attack

Complexities

• Time complexity:

$$
\mathsf{max}(2^{\frac{1}{2}(n-\mathsf{min}(|d_{\mathcal{B}}-d_{\mathcal{R}}|,d_{\mathcal{B}},d_{\mathcal{R}},d_{\mathcal{M}}))}, \sqrt[3]{k} \cdot 2^{(n+2k)/3}),
$$

• Memory complexity:

$$
\max\left(2^k, \min(2^{d_{\mathcal{B}}}, 2^{d_{\mathcal{R}}})\right).
$$

To perform a faster attack than the generic attack, we need (we omit the factor \sqrt{k} here.)

$$
k\leq \tfrac{n}{7}, \min\left(\left|d_{\mathcal{B}}-d_{\mathcal{R}}\right|, d_{\mathcal{B}}, d_{\mathcal{R}}, d_{\mathcal{M}}\right) \geq \tfrac{n}{7}.
$$

MILP-based search method for MITM Nostradamus Attacks

Based on the MILP model of the MITM preimage attack, we proposed an automated seach method for the MITM Nostradamus attacks on AES-like hashing. The notations and propagation rules are the same as previous works [\[Bao+21;](#page-34-0) [Don+21;](#page-34-1) [Bao+22\]](#page-35-1).

MILP-based search method for MITM Nostradamus Attacks

Additional Rules for MITM Nostradamus Attacks

$$
\left\{\begin{array}{lcr} O_{\texttt{mitm}} & \leq & \texttt{DoF}^\mathcal{B}, \\ O_{\texttt{mitm}} & \leq & \texttt{DoF}^\mathcal{R}, \\ O_{\texttt{mitm}} & \leq & \texttt{DoM}, \end{array}\right. \quad \left\{\begin{array}{lcr} O_{\texttt{total}} & \geq & \frac{n+k}{2}, \\ O_{\texttt{total}} & \geq & n-w \cdot O_{\texttt{mitm}}. \end{array}\right.
$$

Additional Rules for Quantum MITM Nostradamus Attacks

$$
\left\{\begin{array}{lcr} O_{\text{mitm}}&\leq&\frac{\text{DoF}^{\mathcal{B}}}{2},\\ O_{\text{mitm}}&\leq&\frac{\text{DoF}^{\mathcal{R}}}{2},\\ O_{\text{mitm}}&\leq&\frac{\text{max}(\text{DoF}^{\mathcal{B}}-\text{DoF}^{\mathcal{R}},\text{DoF}^{\mathcal{R}}-\text{DoF}^{\mathcal{B}})}{2},\\ O_{\text{mitm}}&\leq&\frac{\text{DoM}}{2},\\ O_{\text{mitm}}&\leq&\frac{\text{DoM}}{2},\\ \end{array}\right\},\quad \left\{\begin{array}{lcl} O_{\text{total}}&\geq&\frac{n+2\cdot k}{3},\\ O_{\text{total}}&\geq&\frac{n}{2}-w\cdot O_{\text{mitm}},\\ O_{\text{mitm}}&\leq&\frac{\text{DoM}}{2}.\end{array}\right.
$$

 $\leftarrow \equiv$ \rightarrow

4 0 K

 QQQ

Outline

3 [Meet-in-the-Middle Nostradamus Attacks](#page-16-0)

 \equiv

 2990

Results

Table: Results of Nostradamus attacks.

Zhiyu Zhang, Siwei Sun et al. **[MITM Nostradamus Attacks](#page-0-0)** March 29, 2024 23 / 27

メロトメ 倒 トメ 君 トメ 君 ト

 298

Conclusions and Future Works

- The first dedicated Nostradamus attack on AES-like hashing.
- Could be quadratically accelerated in quantum setting.

B

Þ

4 0 K

Conclusions and Future Works

- The first dedicated Nostradamus attack on AES-like hashing.
- Could be quadratically accelerated in quantum setting.

Future works

- Constructing diamond structures by dedicated methods.
- Improved the MITM attack: more techniques, more refined models, partial preimage attacks.

 $-10⁻¹$

Conclusions and Future Works

- The first dedicated Nostradamus attack on AES-like hashing.
- Could be quadratically accelerated in quantum setting.

Future works

- Constructing diamond structures by dedicated methods.
- Improved the MITM attack: more techniques, more refined models, partial preimage attacks.

Thank you for listening!

Reference I

Some figures are from [\[Zha+23;](#page-35-3) [KK06;](#page-33-0) [BFH22\]](#page-33-1).

- [KK06] John Kelsey and Tadayoshi Kohno. "Herding hash functions and the Nostradamus attack". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2006, pp. 183–200.
- [BFH22] Barbara Jiabao Benedikt, Marc Fischlin, and Moritz Huppert. "Nostradamus goes quantum". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2022, pp. 583–613.
- [Don+23] Xiaoyang Dong et al. "Quantum Attacks on Hash Constructions with Low Quantum Random Access Memory". In: Cryptology ePrint Archive (2023).

医心室

4. 0. 3.

Reference II

[Bao+21] Zhenzhen Bao et al. "Automatic search of meet-in-the-middle preimage attacks on AES-like hashing". In: Advances in Cryptology–EUROCRYPT 2021: 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I 40. Springer. 2021, pp. 771–804.

[Don+21] Xiaoyang Dong et al. "Meet-in-the-middle attacks revisited: key-recovery, collision, and preimage attacks". In: Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part III 41. Springer. 2021, pp. 278–308.

[SS22] André Schrottenloher and Marc Stevens. "Simplified MITM modeling for permutations: New (quantum) attacks". In: Annual International Cryptology Conference. Springer. 2022, pp. 717–747.

Reference III

- [Bao+22] Zhenzhen Bao et al. "Superposition meet-in-the-middle attacks: updates on fundamental security of AES-like hashing". In: Annual International Cryptology Conference. Springer. 2022, pp. 64–93.
- [Qin+23] Lingyue Qin et al. "Meet-in-the-middle preimage attacks on sponge-based hashing". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2023, pp. 158–188.
- [Zha+23] Zhiyu Zhang et al. "Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing". In: IACR Transactions on Symmetric Cryptology (2023), pp. 224–252.

