
Secure Message Authentication
in the Presence of Leakage and Faults

Francesco Berti, Chun Guo, Thomas Peters
Yaobin Shen, François-Xavier Standaert

March 22, FSE 2023@Beijing, China

Outline

•Motivation

•Contribution

•Conclusion

2

Message Authentication Codes (MACs)

• Black-box secure message authentication codes to ensure integrity
• attacker knows algorithm and only sees inputs/outputs
• the key is kept secret
• internal states are secret

3

Mack Vrfyk𝑚
(𝑚, 𝜏)

0/1

MACs against Side-Channel Attacks (SCA)

• Side-channel attacks (time, power consumption, Electromagnetic
radiation)
• the information of key may be leaked
• the internal values may be leaked

4

Mack Vrfyk𝑚
(𝑚, 𝜏)

0/1

MACs against Faults Attacks (FA)

• Faults attacks (voltage glitch, electromagnetic pulse, LASER,…)
• the key may be influenced
• the internal values may be influenced

5

Mack Vrfyk𝑚
(𝑚, 𝜏)

0/1

MACs against both SCA and FA

• Combined attacks: side-channel and faults attacks
• the key may be leaked and influenced
• the internal values may be leaked and influenced

6

Mack Vrfyk𝑚
(𝑚, 𝜏)

0/1

How to Protect against Leakage and Faults

• Hash-then-PRF: a popular way to design a MAC

• Protection against side-channel and faults, e.g., masking + redundancy

7

H PRF𝑚 𝜏

H PRF𝑚 𝜏

significant performance overheads

How to Improve the Performance

• Leveled implementation [PSV15]
• avoid equally protecting all parts of an implementation
• identify the protection level of each part (performance gains)

• LR-MAC1 [BGPS21] : unbounded leakage for hash + DPA-protected TBC
• can lead to substantial performance gains

• Can we use leveled implementation for combined attacks?

• We initiate a mode-level study of MACs against side-channel and faults
attacks in leveled implemetation

8

Outline

•Motivation

•Contribution

•Conclusion

9

Our Contribution: Overview

• A model to capture both leakage and faults
• assume some atomic components that out of control of the adversary

• Show that LR-MAC1[BGPS21] is secure if only the verification is faulted
• attack when tag generation is faulted

• Propose two MACs that are both fault-resilience and leakage-resilience
• LR-MACd can resist one fault injection
• LR-MACr can resist multiple fault injections with an additional randomness

10

Faults Vrfy Faults Mac Fault types #protected TBCs

LR-MAC1 SaF&DF, multiple 1

LR-MACd SaF&DF, 1 2

LR-MACr DF, multiple 1

SaF: Stuck-at-Faults, DF: Differential Faults

Modeling Faults (1/2)

• For a algorithm y = Algok(x) with implementation (𝑓1, … , 𝑓𝑚)
• use dependency matrix to define this implementation
• each item of dependency matrix may be faulted

• Example: implementation (𝑓1, 𝑓2, 𝑓3), input (𝑥1, 𝑥2)
• 𝑓1 takes 𝑥1 as input
• 𝑓2 takes 𝑥2 as input
• 𝑓3 takes 𝑥1, 𝑦1, 𝑦2 as input

11

Implementation Dependency matrix

Dependency matrix

transform

Modeling Faults (2/2)

• Faulty matrix to capture injected faults
• faulted values: 𝑥1 → 𝑥1

′ , 𝑦2 → 𝑦2
′

• non-faulted values are represented by the dot " ⋅ “
• symbol ⊥ means this value is protected against faults

• Two faults considered in our work
• stuck-at faults: can replace the bits of 𝑥 by any value
• differential faults: can xor Δ to the value 𝑥

12

Dependency matrix Faulty matrix

inject faults

Modeling Leakage

• For a algorithm y = Algok(x) with implementation (𝑓1, … , 𝑓𝑚)
• associate a leakage function Li for each 𝑓𝑖, and LAlgo = (L1, … , Lm)

• write LAlgok(x) for the leaky algorithm ≈ Algok(x) + the output of LAlgo

• Naturally, define faulty leaky algorithm as LAlgok(x, z) where 𝑧 is the
faulty tuple

• Example: 𝑧 = (𝑥1
′ ,⋅,⋅, 𝑦2

′) in the reading direction
• then LAlgok(x, z) is the faulty leaky algorithm

• Some assumptions
• the key is fault-immune
• each 𝑓𝑖 is regarded as a atomic component
• Fault-then-leak model
• unbounded faults and ℓ-bounded faults

13

Faulty matrix

LR-MAC1 against Leakage and Faults

• LR-MAC1 [BGPS21]
• hash function 𝐻 is 𝜖𝐶𝑅-collision resistant
• tweakable block cipher 𝐹 is 𝜖𝑆𝑈𝑃−𝐿2-strong unpredictable with leakage

• Advantage for stuck-at and differential fault-then-leak attacks in
verification

• To find a valid forgery (𝑚, 𝜏), the adversary needs to
• either find a collision against the hash function 𝐻
• or find a valid tuple against the SUP − L2 security of TBC 𝐹

14

𝑞𝑉: #verification queries

Model Leakage and Faults for LR-MAC1

• LR-MAC1 resists faults in verification
• atomic implementation 𝑓1 = 𝐻 ⋅ , 𝑓2 = 𝐹𝑘

−1(⋅,⋅)

• for input 𝑥1, 𝑥2 = (𝑚, 𝜏), 𝑦1 = 𝐻 𝑥1 , 𝑦2 = 𝐹𝑘
−1(𝑦1, 𝜏)

• thus, a faulty leaky verification query is captured by 𝐅𝐋𝐕𝐫𝐟𝐲𝐤(𝑚, 𝜏, 𝑧1, 𝑧2, 𝑧3)

• A leaky tag generation query is captured by LMack(𝑚)

15

Dependency matrix Faulty matrix

Attacks against LR-MAC1 and others

• Insecure tag generation of LR-MAC1
• computes ℎ = 𝐻(𝑚) and ℎ′ = 𝐻(𝑚′), Δ = ℎ ⊕ ℎ′

• queries 𝑚 and injects differential fault Δ into
ℎ to obtain 𝜏

• (𝑚′, 𝜏) is a valid forgery

16

LR-MACd: Improved Security by Iteration

• LR-MACd
• two 𝜖𝐶𝑅-collision resistant hashes
• two 𝜖𝑆𝑃𝑈−𝐿2-self-preserving

unpredictable TBCs
• the ephemeral key 𝑤 of the second

TBC should be protected

• Forge advantage for stuck-at and differential 1-bounded fault-then-leak
attacks in tag generation and verification:

𝑞𝑉: #verification queries

17

Grating Attack on Iterative Schemes

• For any iterative scheme 𝑆 𝑚 = 𝐹 ∘ 𝐻(𝑚)
• queries 𝑚1 to 𝑆 and injects faulted value ℎ∗

to replace ℎ1 = 𝐻(𝑚1)

• queries 𝑚2 to 𝑆 and injects faulted value ℎ1
to replace ℎ2 = 𝐻(𝑚2), and obtain 𝜏2

• (𝑚1, 𝜏2) is a valid forgery

• The protection of 𝑤 is necessary in LR-MACd

• By iterating, it can resist more faults

18

grafting attack
forgery

LR-MACd

LR-MACr: Improved Security with Randomness

• LR-MACr
• 𝐻 is 𝜖𝐶𝑅-collision resistant and
𝜖𝑃𝑅𝐶-preimage resistant after
computation

• 𝐹 is 𝜖𝑆𝑈𝑃−𝐿2-strong unpredictable
with leakage

• randomness 𝑟 ∈ {0,1}𝑛 is selected
for each tag generation

• Forge advantage for unbounded differential fault-then-leak attacks in
tag generation and verification

𝑞𝑉: #verification queries, 𝑞𝑀: #generation queries

19

Outline

•Motivation

•Contribution

•Conclusion

20

Conclusion

• A model to capture both leakage and faults

• Show that LR-MAC1 is secure if only the tag verification is faulted

• Propose two MACs that are fault-resilience and leakage-resilience
• LR-MACd
• LR-MACr

• More in paper
• Fault-resilience vs Fault-resistance
• Sub-atomic faults
• Model discussion and proof details

21

Thanks
yaobin.shen@uclouvain.be?

22

