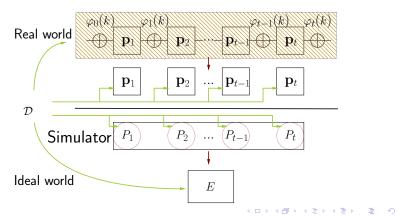

Chosen-Key Secure Even-Mansour Cipher from a Single Permutation

Shanjie Xu, Qi Da, Chun Guo

shanjie1997@mail.sdu.edu.cn, daqi@gmail.com, chun.guo@sdu.edu.cn School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China

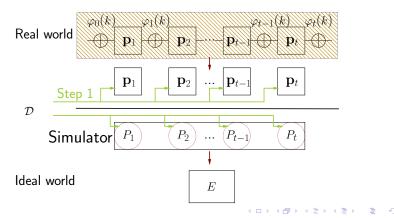
Iterated Even-Mansour (IEM)

Key schedule φ_i : {0,1}^K → {0,1}ⁿ
Permutations p_i : {0,1}ⁿ → {0,1}ⁿ

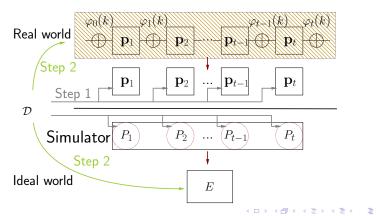

Iterated Even-Mansour (IEM)

■ It abstracts *substitution-permutation network*.

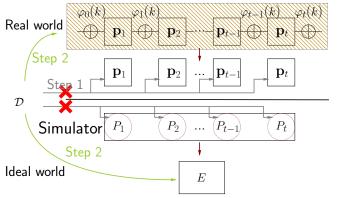
- PRESENT (ISO)
- Skinny (ISO)
- AES
- Modeling p₁,..., p_t as public random permutations, variants of this scheme provably achieve various security notions.

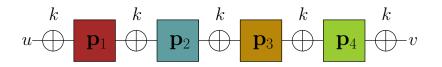

Indifferentiability

 The classical security definition for a blockcipher is indistinguishability from a secret random permutation.


Sequential Indifferentiability

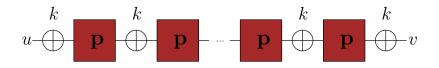
Cogliati and Seurin[CS15] advocated the notion of sequential-indifferentiability.


Sequential Indifferentiability


Cogliati and Seurin[CS15] advocated the notion of sequential-indifferentiability.

Sequential Indifferentiability

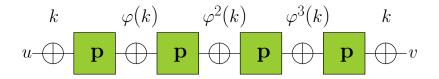
Cogliati and Seurin[CS15] advocated the notion of sequential-indifferentiability.


Cogliati and Seurin's Work

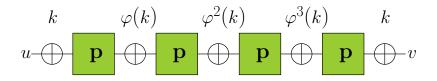
The *"single-key" Even-Mansour* variant EMIP without any non-trivial key schedule is proved sequential indifferentiability at 4 rounds.

Our Question

Whether sequential indifferentiability is achievable using a single permutation?


Attack[XDG23]

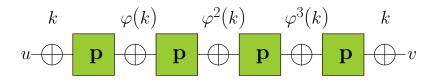
Even in the weaker model of seq-indifferentiability, the "single-key", single-permutation Even-Mansour variant EMSP remains insecure, regardless of the number of rounds.


- 1. Query $y \leftarrow \mathbf{p}(x)$;
- 2. Let $k = x \oplus y$;
- \Rightarrow u = y and v = x.

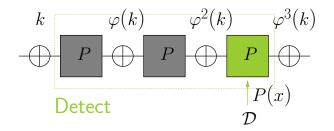
Minimal and Secure Construction

The minimal construction EMSP using a single random permutation $\mathbf{p}: \{0,1\}^n \to \{0,1\}^n$ and an affine key schedule permutation $\varphi: \{0,1\}^n \to \{0,1\}^n$. One can set φ to be a linear orthomorphism, or $\varphi(k) := k \gg_a$.

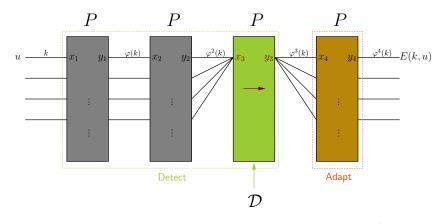
Proof Approach

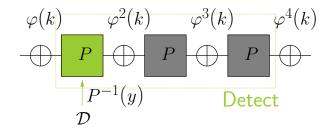


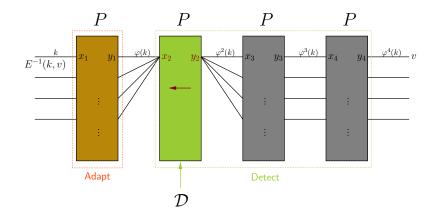
- 1. Construct a simulator that resists obvious attack.
- 2. It remains to argue:
 - The simulator is efficient, i.e., its complexity can be bounded;

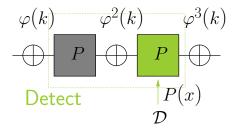

∃ ► < ∃ ►</p>

- The simulator gives rise to an ideal world that is indistinguishable from the real world.

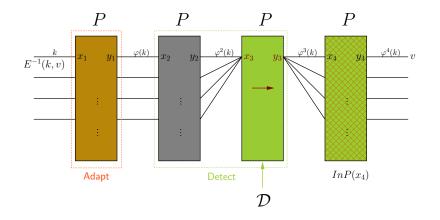

Proof Approach

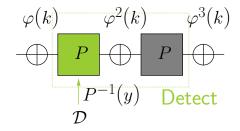

- 1. Chain complete technique;
- 2. Internal values are secret and random.

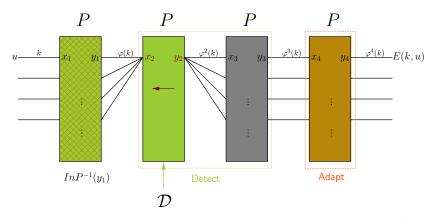

When D queries P(x), the simulator first checks whether it can form a 3-chain.



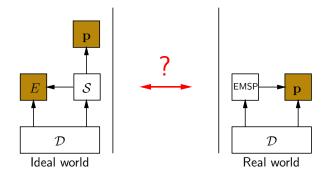
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



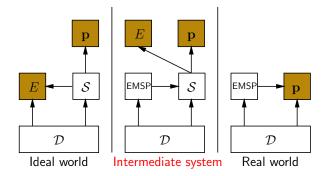

When D queries $P^{-1}(y)$, the simulator checks whether the 3-chain is formed in the opposite direction.



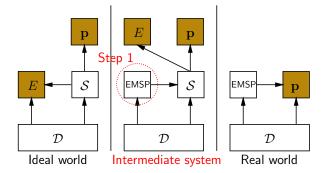
After completing the 3-chain check, the simulator also needs to check the 2-chain. When D queries P(x), the simulator checks the 2-chain of the form as above.



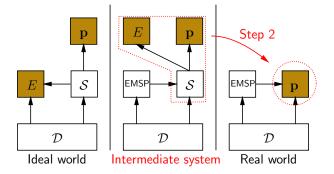
When D queries $P^{-1}(y)$, the simulator checks whether the 2-chain is formed in the opposite direction.



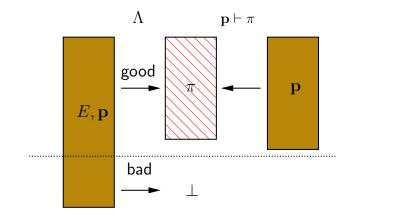
Security Bound


How to get distance between ideal world and real world?

Intermediate system


Getting distance between ideal world and real world can be divided into two steps:

Intermediate system


Step 1: $\Delta \leq \Pr[(E, \mathbf{p} \text{ is bad})].$

Intermediate system

Step 2: Randomness mapping.

Randomness mapping

Comparison

Scheme	$EMIP_4$	EMKD ₃	EM2P	$EMSP_4[\varphi]$
Rounds	4	3	4	4
Primitives	4	4	2	1
Key sch.	no	random oracle	no	iterative
Complex.	q^2	q^2	q^2	q^2
Bounds	$q^4/2^n$	$q^4/2^n$	$q^4/2^n$	$\begin{array}{c} C(\varphi)q^7/2^n \\ +q^{10}/2^n \end{array}$
Ref.	[CS15]	[GL16b]	[XDG23]	this work

Thank you for listening!

∃ 990