
Indifferentiability of the Sponge Construction with
a Restricted Number of Message Blocks

Charlotte Lefevre

Radboud University (The Netherlands)

FSE

20 March 2023

1 / 16

The Sponge Construction [Bertoni et al., 2007]

0b

r

c

m1

A

P

m2

B

P P· · ·

ml

P

C

Z1

D

P

Z2

· · ·

• Extendable output function

• m1‖ · · · ‖ml is the message padded into r -bit blocks

• Absorb rate and squeeze rate different [Guo et al., 2011, Naito and Ohta, 2014]

• Graph notation: 0b
m1−−→ A

m2−−→ B −−→ · · · ml−→ C −−→ D

2 / 16

The Sponge Construction [Bertoni et al., 2007]

0b

ra

ca

m1

A

P

m2

B

P P· · ·

ml

P

C

rs

cs

Z1

D

P

Z2

· · ·

• Extendable output function

• m1‖ · · · ‖ml is the message padded into ra-bit blocks

• Absorb rate and squeeze rate different [Guo et al., 2011, Naito and Ohta, 2014]

• Graph notation: 0b
m1−−→ A

m2−−→ B −−→ · · · ml−→ C −−→ D

2 / 16

The Sponge Construction [Bertoni et al., 2007]

0b

ra

ca

m1

A

P

m2

B

P P· · ·

ml

P

C

rs

cs

Z1

D

P

Z2

· · ·

• Extendable output function

• m1‖ · · · ‖ml is the message padded into -bit blocks

• Absorb rate and squeeze rate different [Guo et al., 2011, Naito and Ohta, 2014]

• Graph notation: 0b
m1−−→ A

m2−−→ B −−→ · · · ml−→ C −−→ D

2 / 16

Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world ideal world

H P/P−1 Sfwd/SinvRO

D

• (HP ,P) for a random primitive P should behave like a random oracle RO paired

with a simulator S that maintains construction-primitive consistency

• H is indifferentiable from RO for some simulator S whenever any D can

distinguish the two worlds only with a negligible probability

• This probability is usually expressed as a function of the number of queries made

3 / 16

Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world ideal world

H P/P−1 Sfwd/SinvRO

D
• Indifferentiability advantage:

Adviff
Sponge (q) = max

D with q queries

∣∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣∣

• Consider the following restriction:

AdvR-iff
Sponge (q, `) = max

D with q queries,

pad(M) ≤ ra × `

∣∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣∣

3 / 16

Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world ideal world

H P/P−1 Sfwd/SinvRO

D
• Indifferentiability advantage:

Adviff
Sponge (q) = max

D with q queries

∣∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣∣
• Consider the following restriction:

AdvR-iff
Sponge (q, `) = max

D with q queries,

pad(M) ≤ ra × `

∣∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣∣
3 / 16

Public Indifferentiability [Yoneyama et al., 2009, Dodis et al., 2009]

real world ideal world

H P/P−1 Sfwd/SinvRO

D

pub

• All construction queries are public =⇒ helps the simulator to keep

RO-consistency

• Weaker model than (plain) indifferentiability: e.g., (plain) Merkle-Damg̊ard is not

indifferentiable but publicly indifferentiable [Dodis et al., 2009]

• Useful in practice, e.g., digital signature schemes

3 / 16

Sponge Indifferentiability

• Sponge indifferentiable with bound O
(
q2

2c

)
[Bertoni et al., 2008]

• Generalized sponge indifferentiable with bound O
(

q
2ca/2

)
as long as

cs ≥ ca/2 + log2(ca) [Naito and Ohta, 2014]

=⇒ At least 2ca/2 queries to differentiate with high probability

• Tight bound: inner collisions while absorbing allow to differentiate

4 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

m1

P

Y ,Y ′ Z

P

Z1

P

Z2

• Query P(m1‖0ca) for 2ca/2 different m1’s and store them in a list L

• With high probability there exist Y 6= Y ′ ∈ L s.t., innerca(Y) = innerca(Y ′)

=⇒ Take m2 = outerra(Y) and m′2 = outerra(Y ′)

=⇒ It gives 0b
m′1‖m′2−−−−→
m1‖m2

Z

• Requires ra ≥ ca/2 and two absorb calls

5 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

m1,m
′
1

P

Y ,Y ′

Z

P

Z1

P

Z2

• Query P(m1‖0ca) for 2ca/2 different m1’s and store them in a list L

• With high probability there exist Y 6= Y ′ ∈ L s.t., innerca(Y) = innerca(Y ′)

=⇒ Take m2 = outerra(Y) and m′2 = outerra(Y ′)

=⇒ It gives 0b
m′1‖m′2−−−−→
m1‖m2

Z

• Requires ra ≥ ca/2 and two absorb calls

5 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

m1,m
′
1

P

m2,m
′
2

Y ,Y ′ Z

P

Z1

P

Z2

• Query P(m1‖0ca) for 2ca/2 different m1’s and store them in a list L

• With high probability there exist Y 6= Y ′ ∈ L s.t., innerca(Y) = innerca(Y ′)

=⇒ Take m2 = outerra(Y) and m′2 = outerra(Y ′)

=⇒ It gives 0b
m′1‖m′2−−−−→
m1‖m2

Z

• Requires ra ≥ ca/2 and two absorb calls

5 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

m1,m
′
1

P

m2,m
′
2

Y ,Y ′ Z

P

Z1

P

Z2

• Query P(m1‖0ca) for 2ca/2 different m1’s and store them in a list L

• With high probability there exist Y 6= Y ′ ∈ L s.t., innerca(Y) = innerca(Y ′)

=⇒ Take m2 = outerra(Y) and m′2 = outerra(Y ′)

=⇒ It gives 0b
m′1‖m′2−−−−→
m1‖m2

Z

• Requires ra ≥ ca/2 and two absorb calls

5 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

ra

ca

m1

P

m2

Y1

P

Y2

P· · ·

mk

PP

Y ,Y ′

P

rs

cs

Z1

P

Z2

· · ·

General case:

• Let k = d ca
2ra
e

• One absorb round gives 2ra different states: not enough for an inner collision

• To have 2ca/2 states (thus an inner collision w.h.p.,) need k absorb calls

• Need also the compensation absorb call to have a full-state collision

=⇒ Requires k + 1 absorb calls

6 / 16

Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]

0b

ra

ca

m1

P

m2

Y1

P

Y2

P· · ·

mk

PP

mk+1,m
′
k+1

Y ,Y ′

P

rs

cs

Z1

P

Z2

· · ·

General case:

• Let k = d ca
2ra
e

• One absorb round gives 2ra different states: not enough for an inner collision

• To have 2ca/2 states (thus an inner collision w.h.p.,) need k absorb calls

• Need also the compensation absorb call to have a full-state collision

=⇒ Requires k + 1 absorb calls

6 / 16

Restricted Sponge

• Consider a sponge where at most ` absorb calls are allowed (but an arbitrary

number of blocks can be squeezed)

• Restrictive setting

• Useful in e.g., password hashing, Fiat-Shamir transform

• When ` < k + 1, the collision (thus differentiability) attack on the sponge does

not apply anymore

• One full-state collision attack in 2b−`×ra queries:

1 Make all `− 1 first absorb call queries to obtain
(

0b
Mi−→ Yi

)
i

2 Compute with primitive queries 0b
M1−−→ Y1 −→ N1 · · · −→ N2b−`×ra

3 2(`−1)×ra Yi states and 2b−`×ra Ni states =⇒ inner collision between some

Yi and Nj happens with high probability

4 Use the last absorb call on Yi to obtain a full state collision

7 / 16

Restricted Sponge

• Consider a sponge where at most ` absorb calls are allowed (but an arbitrary

number of blocks can be squeezed)

• Restrictive setting

• Useful in e.g., password hashing, Fiat-Shamir transform

• When ` < k + 1, the collision (thus differentiability) attack on the sponge does

not apply anymore

• One full-state collision attack in 2b−`×ra queries:

1 Make all `− 1 first absorb call queries to obtain
(

0b
Mi−→ Yi

)
i

2 Compute with primitive queries 0b
M1−−→ Y1 −→ N1 · · · −→ N2b−`×ra

3 2(`−1)×ra Yi states and 2b−`×ra Ni states =⇒ inner collision between some

Yi and Nj happens with high probability

4 Use the last absorb call on Yi to obtain a full state collision

7 / 16

Restricted Sponge

• Consider a sponge where at most ` absorb calls are allowed (but an arbitrary

number of blocks can be squeezed)

• Restrictive setting

• Useful in e.g., password hashing, Fiat-Shamir transform

• When ` < k + 1, the collision (thus differentiability) attack on the sponge does

not apply anymore

• One full-state collision attack in 2b−`×ra queries:

1 Make all `− 1 first absorb call queries to obtain
(

0b
Mi−→ Yi

)
i

2 Compute with primitive queries 0b
M1−−→ Y1 −→ N1 · · · −→ N2b−`×ra

3 2(`−1)×ra Yi states and 2b−`×ra Ni states =⇒ inner collision between some

Yi and Nj happens with high probability

4 Use the last absorb call on Yi to obtain a full state collision

7 / 16

Tightness of Indifferentiability With a Restricted Sponge

• Attack has a cost of 2b−`×ra while indifferentiability of the sponge guarantees

security up to ≈ 2ca/2 queries

=⇒ There is a gap when ` < k + 1

• Contribution of this work:

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
AdvR-pubiff

Sponge (q, `) = O
(
q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})

8 / 16

Tightness of Indifferentiability With a Restricted Sponge

• Attack has a cost of 2b−`×ra while indifferentiability of the sponge guarantees

security up to ≈ 2ca/2 queries

=⇒ There is a gap when ` < k + 1

• Contribution of this work:

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
AdvR-pubiff

Sponge (q, `) = O
(
q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})

8 / 16

Related Work

0b

r ′′

c ′′

M1

P

r

c

· · · P

Mk

P

r ′

c ′

Z1

P

Z2

· · ·

• When ` = 1 the bound is already captured by an indifferentiability result from

Naito and Ohta: set r = 0, r ′ = rs , r
′′ = ra

• New results whenever 1 < ` < d ca
2ra
e+ 1

9 / 16

Notation

• Define AbsorbPath as

AbsorbPath =
{

0b
}
∪
{
Y | ∃0b

m1‖···‖ml−−−−−−→ Y with l < `
}

=⇒ AbsorbPath contains the rooted nodes where absorption of a message block is

still possible

• Remark: |AbsorbPath| ≤ min
{
q + 1, 2× 2(`−1)×ra

}

• 0b
m1−−→ A1

m2−−→ · · · ml−→ Al −−→ S1 −−→ · · · −−→ Sn is a valid path whenever l ≤ `

10 / 16

Notation

• Define AbsorbPath as

AbsorbPath =
{

0b
}
∪
{
Y | ∃0b

m1‖···‖ml−−−−−−→ Y with l < `
}

=⇒ AbsorbPath contains the rooted nodes where absorption of a message block is

still possible

• Remark: |AbsorbPath| ≤ min
{
q + 1, 2× 2(`−1)×ra

}
• 0b

m1−−→ A1
m2−−→ · · · ml−→ Al −−→ S1 −−→ · · · −−→ Sn is a valid path whenever l ≤ `

10 / 16

The Simulator Used

S = (Sfwd, Sinv), similar to the one used in indifferentiability of sponge

proof [Bertoni et al., 2008]:

• S keeps track of the graph construction

• Sinv returns random elements

• On query with input X , Sfwd keeps RO-consistency whenever X appears in a

valid path

• S behaves like a two-sided RF

• For public indifferentiability: build S ′ which additionally relays to S all primitive

queries associated to the construction queries

11 / 16

The Simulator Used

S = (Sfwd, Sinv), similar to the one used in indifferentiability of sponge

proof [Bertoni et al., 2008]:

• S keeps track of the graph construction

• Sinv returns random elements

• On query with input X , Sfwd keeps RO-consistency whenever X appears in a

valid path

• S behaves like a two-sided RF

• For public indifferentiability: build S ′ which additionally relays to S all primitive

queries associated to the construction queries

11 / 16

World Decomposition

Ideal World

Sfwd/SinvRO

Intermediate World

Sfwd/SinvH

RO

Real World

P/P−1H

D

• One Intermediate World is introduced to facilitate the analysis

• Intermediate versus Real: construction queries can be transformed into primitive

queries =⇒ PRP/PRF switching lemma

• Ideal versus Intermediate: consistency of the simulator with respect to RO and

extra queries to S in Intermediate World =⇒ identical until BAD

12 / 16

World Decomposition

Ideal World

Sfwd/SinvRO

Intermediate World

Sfwd/SinvH

RO
Real World

P/P−1H

D

• One Intermediate World is introduced to facilitate the analysis

• Intermediate versus Real: construction queries can be transformed into primitive

queries =⇒ PRP/PRF switching lemma

• Ideal versus Intermediate: consistency of the simulator with respect to RO and

extra queries to S in Intermediate World =⇒ identical until BAD

12 / 16

World Decomposition

Ideal World

Sfwd/SinvRO

Intermediate World

Sfwd/SinvH

RO
Real World

P/P−1H

D′
x x

• One Intermediate World is introduced to facilitate the analysis

• Intermediate versus Real: construction queries can be transformed into primitive

queries =⇒ PRP/PRF switching lemma

• Ideal versus Intermediate: consistency of the simulator with respect to RO and

extra queries to S in Intermediate World =⇒ identical until BAD

12 / 16

World Decomposition

Ideal World

Sfwd/SinvRO

Intermediate World

Sfwd/SinvH

RO
Real World

P/P−1H

D

• One Intermediate World is introduced to facilitate the analysis

• Intermediate versus Real: construction queries can be transformed into primitive

queries =⇒ PRP/PRF switching lemma

• Ideal versus Intermediate: consistency of the simulator with respect to RO and

extra queries to S in Intermediate World =⇒ identical until BAD

12 / 16

Ideal versus Intermediate: Bad Events

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• GUESS: (only in Intermediate World) adversary guesses an intermediate state

generated from construction queries without having made the primitive queries

To do that, it can guess:

1 Either the full state of any rooted node

2 Either the inner part of a node in AbsorbPath

GUESS does not apply in public indifferentiability
0b

ra

ca

m1

X ′

P

Y ′

ra

rs−ra

m2

cs

Z1

X

P

• : inner collisions with AbsorbPath

• : Xi = Xj or Yi = Yj for some j < i

• CONNECT: Yi = Xj or Xi = Yj for some j < i

13 / 16

Ideal versus Intermediate: Bad Events

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• GUESS: (only in Intermediate World) adversary guesses an intermediate state

generated from construction queries without having made the primitive queries

To do that, it can guess:

1 Either the full state of any rooted node

2 Either the inner part of a node in AbsorbPath

GUESS does not apply in public indifferentiability

0b

ra

ca

m1

X ′

P

Y ′

ra

rs−ra

m2

cs

Z1

X

P

• INNER: inner collisions with AbsorbPath

• : Xi = Xj or Yi = Yj for some j < i

• CONNECT: Yi = Xj or Xi = Yj for some j < i

13 / 16

Ideal versus Intermediate: Bad Events

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• GUESS: (only in Intermediate World) adversary guesses an intermediate state

generated from construction queries without having made the primitive queries

To do that, it can guess:

1 Either the full state of any rooted node

2 Either the inner part of a node in AbsorbPath

GUESS does not apply in public indifferentiability

0b

ra

ca

m1

X ′

P

Y ′

ra

rs−ra

m2

cs

Z1

X

P

• INNER: inner collisions with AbsorbPath

• COL: Xi = Xj or Yi = Yj for some j < i

• CONNECT: Yi = Xj or Xi = Yj for some j < i

13 / 16

Ideal versus Intermediate: Bad Events

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• GUESS: (only in Intermediate World) adversary guesses an intermediate state

generated from construction queries without having made the primitive queries

To do that, it can guess:

1 Either the full state of any rooted node

2 Either the inner part of a node in AbsorbPath

GUESS does not apply in public indifferentiability

0b

ra

ca

m1

X ′

P

Y ′

ra

rs−ra

m2

cs

Z1

X

P

• INNER: inner collisions with AbsorbPath

• COL: Xi = Xj or Yi = Yj for some j < i

• CONNECT: Yi = Xj or Xi = Yj for some j < i

13 / 16

Tightness of the bound

• Remember that

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• Inner collision attack has a cost of ≈ max

{
2ca/2; 2b−`×ra

}
queries

• What about the others terms?

• 2cs queries: adversary can try all inner parts

• 2b/2 queries: adversary can set CONNECT

14 / 16

Tightness of the bound

• Remember that

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• Inner collision attack has a cost of ≈ max

{
2ca/2; 2b−`×ra

}
queries

• What about the others terms?

• 2cs queries: adversary can try all inner parts

• 2b/2 queries: adversary can set CONNECT

14 / 16

Application

• Ascon-hash

• b = 320, c = 256, r = 64

• Unrestricted sponge: 128 bits of security

• Sponge with input messages of at most 127 bits: 160 bits of security

• Photon Beetle-Hash or T-Quark

• b = 256, c = 224, r = 32

• Unrestricted sponge: 112 bits of security

• Sponge with input messages of at most 127 bits: 128 bits of security

• To maximize security and absorbing rate, the best parameter choice is

` = 1, ca = ra = b/2

15 / 16

Conclusion

• Proved a tight indifferentiability bound for the sponge construction when the

number of message blocks is restricted

• It gives a better security bound when less than d ca
2ra
e+ 1 blocks are absorbed

Thank you for your attention!

16 / 16

References i

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. (2007).

Sponge functions.

Ecrypt Hash Workshop 2007.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. (2008).

On the Indifferentiability of the Sponge Construction.

In Smart, N. P., editor, Advances in Cryptology - EUROCRYPT 2008, 27th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of

Lecture Notes in Computer Science, pages 181–197. Springer.

16 / 16

References ii

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. (2011).

Cryptographic sponge functions.

https://keccak.team/files/CSF-0.1.pdf.

Coron, J., Dodis, Y., Malinaud, C., and Puniya, P. (2005).

Merkle-Damg̊ard Revisited: How to Construct a Hash Function.

In Shoup, V., editor, Advances in Cryptology - CRYPTO 2005: 25th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,

pages 430–448. Springer.

16 / 16

https://keccak.team/files/CSF-0.1.pdf

References iii

Dodis, Y., Ristenpart, T., and Shrimpton, T. (2009).

Salvaging merkle-damg̊ard for practical applications.

In Joux, A., editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual

International Conference on the Theory and Applications of Cryptographic

Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of

Lecture Notes in Computer Science, pages 371–388. Springer.

Guo, J., Peyrin, T., and Poschmann, A. (2011).

The PHOTON family of lightweight hash functions.

In Rogaway, P., editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.

Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 222–239.

Springer.

16 / 16

References iv

Maurer, U. M., Renner, R., and Holenstein, C. (2004).

Indifferentiability, Impossibility Results on Reductions, and Applications to

the Random Oracle Methodology.

In Naor, M., editor, Theory of Cryptography, First Theory of Cryptography

Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,

volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer.

Naito, Y. and Ohta, K. (2014).

Improved indifferentiable security analysis of PHOTON.

In Abdalla, M. and Prisco, R. D., editors, Security and Cryptography for Networks

- 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.

Proceedings, volume 8642 of Lecture Notes in Computer Science, pages 340–357.

Springer.

16 / 16

References v

Yoneyama, K., Miyagawa, S., and Ohta, K. (2009).

Leaky random oracle.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(8):1795–1807.

16 / 16

	Sponge construction
	Indifferentiability
	Contribution
	Proof Idea
	Application

