Cryptanalysis of Reduced Round ChaCha - New Attack & Deeper Analysis¹ Fast Software Encryption - 2023, Beijing, China Sabvasachi Dev¹. **Hirendra Kumar Garai**¹. Subhamov Maitra² ¹Department of Mathematics, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India, ²Applied Statistics Unit. Indian Statistical Institute, Kolkata, 700108, India ¹Dey, S., Garai, H. K., Maitra, S. (2023). Cryptanalysis of Reduced Round ChaCha – New Attack Deeper Analysis. IACR Transactions on Symmetric Cryptology, 2023(1), 89–110. 20 March 2023 https://doi.org/10.46586/tosc.y2023.i1.89-110 #### Introduction - Symmetric cipher is of two types : - 1. Block cipher A block of plaintext is encrypted at a time. - 2. Stream cipher Key-stream generated from a key is XORed with plaintext in encryption. - ► ARX is a popular design scheme. Easy to implement and fast performance. - ► FEAL (1970) was the first cipher that used ARX scheme. - ▶ **ChaCha** is a stream cipher that uses ARX design (2008). Figure: ARX design # Structure of ChaCha (Keystream generation algorithm) - Output: 512-bit key-stream. - ► Key stream generation algorithm takes a 256-bit Key (k), 128-bit Constant(c), and 128-bit Initial vectors (v, t) / attacker controlled inputs. - ► They are stored in the following matrix form: $$X = \begin{pmatrix} X_0 & X_1 & X_2 & X_3 \\ X_4 & X_5 & X_6 & X_7 \\ X_8 & X_9 & X_{10} & X_{11} \\ X_{12} & X_{13} & X_{14} & X_{15} \end{pmatrix}_{4 \times 4} =$$ | | /(| constant | constant | constant | constant) | |---|--------------|----------|----------|----------|------------| | _ | 1 | key | key | key | key | | _ | | key | key | key | key | | | \backslash | input | input | input | input | $\times 4$ #### ChaCha Round function - **ChaCha** round functions invertibly transforms the state X through 20 rounds. - Each **ChaCha** round is constructed with following ARX functions which updates vector (a, b, c, d) to (a'', b'', c'', d''): $$a' = a \boxplus b; \qquad d' = ((d \oplus a') \lll 16);$$ $$c' = c \boxplus d'; \qquad b' = ((b \oplus c') \lll 12);$$ $$a'' = a' \boxplus b'; \qquad d'' = ((d' \oplus a'') \lll 8);$$ $$c'' = c' \boxplus d''; \qquad b'' = ((b' \oplus c'') \lll 7);$$ $$(1)$$ In odd numbered rounds the **column** vectors of X are updated: $$\begin{pmatrix} x_0 \\ x_4 \\ x_8 \\ x_{12} \end{pmatrix}, \begin{pmatrix} x_1 \\ x_5 \\ x_9 \\ x_{13} \end{pmatrix}, \begin{pmatrix} x_2 \\ x_6 \\ x_{10} \\ x_{14} \end{pmatrix}, \begin{pmatrix} x_3 \\ x_7 \\ x_{11} \\ x_{15} \end{pmatrix}$$ In even numbered rounds the **diagonal** vectors of X are updated: $$\begin{pmatrix} x_0 \\ x_5 \\ x_{10} \\ x_{15} \end{pmatrix}, \begin{pmatrix} x_1 \\ x_6 \\ x_{11} \\ x_{12} \end{pmatrix}, \begin{pmatrix} x_2 \\ x_7 \\ x_8 \\ x_{13} \end{pmatrix}, \begin{pmatrix} x_3 \\ x_4 \\ x_9 \\ x_{14} \end{pmatrix}$$ ightharpoonup The final keystream Z is given by: $$Z = X \boxplus X^{(20)}$$ $X^{(20)}$ is the state after 20 **ChaCha** rounds. ▶ In **ChaCha** cipher, one can reverse back from round r to round r-1 by reversing the ARX operations. #### **Attacks on ChaCha** - Type of cryptanalysis : Mostly of differential-linear. A single differential $(\mathcal{ID}, \mathcal{OD})$ is used. - One of the prominent attack technique: Probabilistic Neutral Bits (PNB's) based attack². - → ³The claimed complexity of most successful attack before our attack on 6 round ChaCha: 2^{104.68}. Dey, Garai, Maitra Cryptanalysis of RR- ChaCha - 20th Mar 7 ²J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. Fast Software Encryption 2008 ³M. Coutinho and T. C. S. Neto. New Multi-bit Differentials to Improve Attacks Against ChaCha. IACR Cryptol. ePrint Arch., page 350, 2020. https://eprint.iacr.org/2020/350. # **Correction of the complexity formula** ▶ The formula to compute complexity was given by Aumasson et. al: $$2^m \cdot N + 2^{k-\alpha}$$, where *m* is very very bigger than α (2) The updated form is given by Dey et. al⁴: $$2^m \cdot N + 2^{k-\alpha} + 2^{k-m} \tag{3}$$ k = Total number of key-bits, m = Number of non-PNBs, $2^{-\alpha}$ = False alarm probability. N = Data complexity. ightharpoonup Using the existing attacks, the runtime complexity can not go below $2^{k/2}$. ⁴S. Dey, H. K. Garai, S. Sarkar, and N. K. Sharma. Revamped Differential-Linear Cryptanalysis on Reduced Round ChaCha. Advances in Cryptology - EUROCRYPT 2022 # **Updated complexities of the existing attacks** | Attack | # PNB | Complexity | | | | |--------|-------|---------------------|-------------------------|--|--| | Allack | | Claimed | Actual | | | | [1] | 147 | 2 ¹³⁹ | 2 ¹⁴⁷ | | | | [4] | 136 | 2 ¹³⁶ | 2 ¹³⁹ | | | | [2] | 159 | 2 ^{131.40} | 2 ¹⁵⁹ | | | | [2] | 161 | 2 ^{129.53} | 2 ¹⁶¹ | | | | [2] | 166 | 2 ^{127.5} | 2 ¹⁶⁶ | | | | [3] | 210 | 2 ^{102.2} | 2 ²¹⁰ | | | | [3] | 212 | 2104.68 | 2 ²¹² | | | Table: Corrected complexities of certain previous key-recovery attacks on 6-round ChaCha and our improved result. # Multiple $(\mathcal{ID},\mathcal{OD})$ approach: # **Preprocessing stage:** #### **Data collection:** The attacker chooses N_1 numbers of $\emph{IV's}\ \emph{v}$ and then collects the corresponding keystreams \emph{Z} . The same is done for the differenced versions. Total N₁ pairs of (*IV*, **keystream**) is collected corresponding to first differential Similarly N_2 and N_3 pairs of $(\emph{IV}, keystream)$ is collected for second and third differentials respectively. Total (N₁ + N₂ + N₃) pairs of (*IV*, **keystream**) along with their differenced version is collected. Figure: Data collection #### **Key recovery:** Figure: S_1 recovery - Now he has the correct values for the $|S_1|$ key-bits. Leaving those key bits as it is, he searches $|S_2|$ key bits as similar as before. - \blacktriangleright After getting the key-bits of S_2 correct he recovers the key-bits of S_3 similarly. - Lastly the $|S_4|$ key-bits are searched exhaustively. # **Complexity of our attack** | $(\mathcal{ID},\mathcal{OD})$ | Key-bits that are not PNB | Data | | |-------------------------------|-----------------------------|------------------|--| | ((12,6),(1,0)) | 58(<i>S</i> ₁) | $2^{41.67}(N_1)$ | | | ((13,6),(2,0)) | 56(<i>S</i> ₂) | $2^{34.26}(N_2)$ | | | ((14,6),(3,0)) | 50(<i>S</i> ₃) | $2^{30.32}(N_3)$ | | Here $|S_4| = 92$. The runtime complexity formula for this attack is $$2^{|S_1|} \cdot N_1 + 2^{|S_2|} \cdot N_2 + 2^{|S_3|} \cdot N_3 + 2^{|S_4|} \tag{4}$$ which after putting the value becomes $\approx 2^{99.48} < 2^{256/2}$. ## Why ToyChaCha? - ► The complexity formula, success probability uses many statistical assumption which is not experimentally verified. - ▶ The attacks on the original **ChaCha** cipher is impossible to demonstrate till date. #### **Structure of cipher** - ▶ The 128-bit input to the ToyChaCha is arranged in 4×4 matrix, where each entry is of 8-bit. - ► The Toy**ChaCha** uses a **64**-bit key. - ► The *round* function is accordingly adjusted. ## **Results on ToyChaCha** | Parameter | Attack of Aumasson et. al | | Attack of Maitra | | | |---------------------------------|---------------------------|--------------------|--------------------|--------------------|--| | Parameter | Theory | Experiment | Theory | Experiment | | | Data | 378 | 378 | 185 | 185 | | | Complexity for significant bits | 2 ^{24.56} | 2 ^{23.56} | 2 ^{24.53} | 2 ^{23.47} | | | False alarm Complexity | 2 ²¹ | 2 ^{18.18} | 2 ²¹ | 2 ^{17.59} | | | Complexity for PNBs | 2 ¹⁶ | 2 ^{15.01} | 2 ¹⁵ | 2 ^{13.99} | | | Total Complexity | 2 ^{24.67} | 2 ^{23.60} | 2 ^{24.65} | 2 ^{23.50} | | | Success probability | ≥ 0.50 | 0.9981 | ≥ 0.50 | 0.9971 | | | Pr _{fa} | ≤ 0.00049 | 0.00034 | ≤ 0.00049 | 0.00015 | | Table: Comparison of theoretical claim and experimental results of the implemented attack on 3.5 round Toy**ChaCha** # Multiple $(\mathcal{ID},\mathcal{OD})$ attack on ToyChaCha | Complexity | Single $(\mathcal{ID},\mathcal{OD})$ | | | Multiple ($\mathcal{ID},\mathcal{OD}$) | | |---------------|--------------------------------------|---------------------|--------------------|--|--------------------| | Complexity | Theory (Aumasson et. al) | Theory (Dey et. al) | Experiment | Theory | Experiment | | Data | 95 | 95 | 95 | 94 | 94 | | Recover S_1 | 2 ^{14.56} | 2 ^{14.56} | 2 ^{13.51} | 2 ^{14.56} | 2 ^{13.51} | | Recover S_2 | - | - | - | 2 ^{14.56} | $2^{13.51}$ | | Recover S_3 | - | - | - | 2 ^{14.56} | $2^{13.5}$ | | False alarm | 2^{-8} | 2^{-8} | 0 | 0 | 0 | | Recover PNB | 0 | 2 ²⁴ | 2 ^{23.01} | 2 ⁸ | 2 ^{6.95} | | Total | 214.56 | 2 ²⁴ | 2 ^{23.01} | 2 ^{16.15} | 2 ^{15.1} | Table: Comparison of theory and experiments for 3-round attack using multiple $(\mathcal{ID}, \mathcal{OD})$ and single $(\mathcal{ID}, \mathcal{OD})$ #### Reference [1] J. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. Fast Software Encryption, 15th International Workshop, Lausanne, Switzerland, Revised Selected Papers, 5086:470-488, 2008. https://doi.org/10.1007/978-3-540-71039-4_30. [2] A. R. Choudhuri and S. Maitra. Significantly Improved Multi-bit Differentials for Reduced Round Salsa and ChaCha. IACR Trans. Symmetric Cryptol., 2016(2):261-287, 2016. https://doi.org/10.13154/tosc.v2016.i2.261-287. [3] M. Coutinho and T. C. S. Neto. New Multi-bit Differentials to Improve Attacks Against ChaCha. IACR Cryptol, ePrint Arch., page 350, 2020. https://eprint.jacr.org/2020/35 [4] Z. Shi, B. Zhang, D. Feng, and W. Wu. Improved Key Recovery Attacks on Reduced-Round Salsazo and ChaCha. Information Security and Cryptology - ICISC 2012 - 15th International Conference, Seoul, Korea, Revised Selected Papers, 7839:337–351, 2012. https://doi.org/10.1007/978-3-642-37682-5 24 # Dhonnobad !! (Thank You)