Cryptanalysis of Reduced Round ChaCha - New Attack & Deeper Analysis¹

Fast Software Encryption - 2023, Beijing, China

Sabvasachi Dev¹. **Hirendra Kumar Garai**¹. Subhamov Maitra²

¹Department of Mathematics, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India, ²Applied Statistics Unit. Indian Statistical Institute, Kolkata, 700108, India

¹Dey, S., Garai, H. K., Maitra, S. (2023). Cryptanalysis of Reduced Round ChaCha – New Attack Deeper Analysis. IACR Transactions on Symmetric Cryptology, 2023(1), 89–110.

20 March 2023 https://doi.org/10.46586/tosc.y2023.i1.89-110

Introduction

- Symmetric cipher is of two types :
 - 1. Block cipher A block of plaintext is encrypted at a time.
 - 2. Stream cipher Key-stream generated from a key is XORed with plaintext in encryption.
- ► ARX is a popular design scheme. Easy to implement and fast performance.
- ► FEAL (1970) was the first cipher that used ARX scheme.
- ▶ **ChaCha** is a stream cipher that uses ARX design (2008).

Figure: ARX design

Structure of ChaCha (Keystream generation algorithm)

- Output: 512-bit key-stream.
- ► Key stream generation algorithm takes a 256-bit Key (k), 128-bit Constant(c), and 128-bit Initial vectors (v, t) / attacker controlled inputs.
- ► They are stored in the following matrix form:

$$X = \begin{pmatrix} X_0 & X_1 & X_2 & X_3 \\ X_4 & X_5 & X_6 & X_7 \\ X_8 & X_9 & X_{10} & X_{11} \\ X_{12} & X_{13} & X_{14} & X_{15} \end{pmatrix}_{4 \times 4} =$$

	/(constant	constant	constant	constant)
_	1	key	key	key	key
_		key	key	key	key
	\backslash	input	input	input	input

 $\times 4$

ChaCha Round function

- **ChaCha** round functions invertibly transforms the state X through 20 rounds.
- Each **ChaCha** round is constructed with following ARX functions which updates vector (a, b, c, d) to (a'', b'', c'', d''):

$$a' = a \boxplus b; \qquad d' = ((d \oplus a') \lll 16);$$

$$c' = c \boxplus d'; \qquad b' = ((b \oplus c') \lll 12);$$

$$a'' = a' \boxplus b'; \qquad d'' = ((d' \oplus a'') \lll 8);$$

$$c'' = c' \boxplus d''; \qquad b'' = ((b' \oplus c'') \lll 7);$$

$$(1)$$

In odd numbered rounds the **column** vectors of X are updated:

$$\begin{pmatrix} x_0 \\ x_4 \\ x_8 \\ x_{12} \end{pmatrix}, \begin{pmatrix} x_1 \\ x_5 \\ x_9 \\ x_{13} \end{pmatrix}, \begin{pmatrix} x_2 \\ x_6 \\ x_{10} \\ x_{14} \end{pmatrix}, \begin{pmatrix} x_3 \\ x_7 \\ x_{11} \\ x_{15} \end{pmatrix}$$

In even numbered rounds the **diagonal** vectors of X are updated:

$$\begin{pmatrix} x_0 \\ x_5 \\ x_{10} \\ x_{15} \end{pmatrix}, \begin{pmatrix} x_1 \\ x_6 \\ x_{11} \\ x_{12} \end{pmatrix}, \begin{pmatrix} x_2 \\ x_7 \\ x_8 \\ x_{13} \end{pmatrix}, \begin{pmatrix} x_3 \\ x_4 \\ x_9 \\ x_{14} \end{pmatrix}$$

ightharpoonup The final keystream Z is given by:

$$Z = X \boxplus X^{(20)}$$

 $X^{(20)}$ is the state after 20 **ChaCha** rounds.

▶ In **ChaCha** cipher, one can reverse back from round r to round r-1 by reversing the ARX operations.

Attacks on ChaCha

- Type of cryptanalysis : Mostly of differential-linear. A single differential $(\mathcal{ID}, \mathcal{OD})$ is used.
- One of the prominent attack technique: Probabilistic Neutral Bits (PNB's) based attack².
- → ³The claimed complexity of most successful attack before our attack on 6 round
 ChaCha: 2^{104.68}.

Dey, Garai, Maitra Cryptanalysis of RR- ChaCha - 20th Mar 7

²J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. Fast Software Encryption 2008

³M. Coutinho and T. C. S. Neto. New Multi-bit Differentials to Improve Attacks Against ChaCha. IACR Cryptol. ePrint Arch., page 350, 2020. https://eprint.iacr.org/2020/350.

Correction of the complexity formula

▶ The formula to compute complexity was given by Aumasson et. al:

$$2^m \cdot N + 2^{k-\alpha}$$
, where *m* is very very bigger than α (2)

The updated form is given by Dey et. al⁴:

$$2^m \cdot N + 2^{k-\alpha} + 2^{k-m} \tag{3}$$

k = Total number of key-bits, m = Number of non-PNBs, $2^{-\alpha}$ = False alarm probability. N = Data complexity.

ightharpoonup Using the existing attacks, the runtime complexity can not go below $2^{k/2}$.

⁴S. Dey, H. K. Garai, S. Sarkar, and N. K. Sharma. Revamped Differential-Linear Cryptanalysis on Reduced Round ChaCha. Advances in Cryptology - EUROCRYPT 2022

Updated complexities of the existing attacks

Attack	# PNB	Complexity			
Allack		Claimed	Actual		
[1]	147	2 ¹³⁹	2 ¹⁴⁷		
[4]	136	2 ¹³⁶	2 ¹³⁹		
[2]	159	2 ^{131.40}	2 ¹⁵⁹		
[2]	161	2 ^{129.53}	2 ¹⁶¹		
[2]	166	2 ^{127.5}	2 ¹⁶⁶		
[3]	210	2 ^{102.2}	2 ²¹⁰		
[3]	212	2104.68	2 ²¹²		

Table: Corrected complexities of certain previous key-recovery attacks on 6-round ChaCha and our improved result.

Multiple $(\mathcal{ID},\mathcal{OD})$ approach:

Preprocessing stage:

Data collection:

The attacker chooses N_1 numbers of $\emph{IV's}\ \emph{v}$ and then collects the corresponding keystreams \emph{Z} . The same is done for the differenced versions.

Total N₁ pairs of (*IV*, **keystream**) is collected corresponding to first differential

Similarly N_2 and N_3 pairs of $(\emph{IV}, keystream)$ is collected for second and third differentials respectively.

Total (N₁ + N₂ + N₃) pairs of (*IV*, **keystream**) along with their differenced version is collected.

Figure: Data collection

Key recovery:

Figure: S_1 recovery

- Now he has the correct values for the $|S_1|$ key-bits. Leaving those key bits as it is, he searches $|S_2|$ key bits as similar as before.
- \blacktriangleright After getting the key-bits of S_2 correct he recovers the key-bits of S_3 similarly.
- Lastly the $|S_4|$ key-bits are searched exhaustively.

Complexity of our attack

$(\mathcal{ID},\mathcal{OD})$	Key-bits that are not PNB	Data	
((12,6),(1,0))	58(<i>S</i> ₁)	$2^{41.67}(N_1)$	
((13,6),(2,0))	56(<i>S</i> ₂)	$2^{34.26}(N_2)$	
((14,6),(3,0))	50(<i>S</i> ₃)	$2^{30.32}(N_3)$	

Here $|S_4| = 92$.

The runtime complexity formula for this attack is

$$2^{|S_1|} \cdot N_1 + 2^{|S_2|} \cdot N_2 + 2^{|S_3|} \cdot N_3 + 2^{|S_4|} \tag{4}$$

which after putting the value becomes $\approx 2^{99.48} < 2^{256/2}$.

Why ToyChaCha?

- ► The complexity formula, success probability uses many statistical assumption which is not experimentally verified.
- ▶ The attacks on the original **ChaCha** cipher is impossible to demonstrate till date.

Structure of cipher

- ▶ The 128-bit input to the ToyChaCha is arranged in 4×4 matrix, where each entry is of 8-bit.
- ► The Toy**ChaCha** uses a **64**-bit key.
- ► The *round* function is accordingly adjusted.

Results on ToyChaCha

Parameter	Attack of Aumasson et. al		Attack of Maitra		
Parameter	Theory	Experiment	Theory	Experiment	
Data	378	378	185	185	
Complexity for significant bits	2 ^{24.56}	2 ^{23.56}	2 ^{24.53}	2 ^{23.47}	
False alarm Complexity	2 ²¹	2 ^{18.18}	2 ²¹	2 ^{17.59}	
Complexity for PNBs	2 ¹⁶	2 ^{15.01}	2 ¹⁵	2 ^{13.99}	
Total Complexity	2 ^{24.67}	2 ^{23.60}	2 ^{24.65}	2 ^{23.50}	
Success probability	≥ 0.50	0.9981	≥ 0.50	0.9971	
Pr _{fa}	≤ 0.00049	0.00034	≤ 0.00049	0.00015	

Table: Comparison of theoretical claim and experimental results of the implemented attack on 3.5 round Toy**ChaCha**

Multiple $(\mathcal{ID},\mathcal{OD})$ attack on ToyChaCha

Complexity	Single $(\mathcal{ID},\mathcal{OD})$			Multiple ($\mathcal{ID},\mathcal{OD}$)	
Complexity	Theory (Aumasson et. al)	Theory (Dey et. al)	Experiment	Theory	Experiment
Data	95	95	95	94	94
Recover S_1	2 ^{14.56}	2 ^{14.56}	2 ^{13.51}	2 ^{14.56}	2 ^{13.51}
Recover S_2	-	-	-	2 ^{14.56}	$2^{13.51}$
Recover S_3	-	-	-	2 ^{14.56}	$2^{13.5}$
False alarm	2^{-8}	2^{-8}	0	0	0
Recover PNB	0	2 ²⁴	2 ^{23.01}	2 ⁸	2 ^{6.95}
Total	214.56	2 ²⁴	2 ^{23.01}	2 ^{16.15}	2 ^{15.1}

Table: Comparison of theory and experiments for 3-round attack using multiple $(\mathcal{ID}, \mathcal{OD})$ and single $(\mathcal{ID}, \mathcal{OD})$

Reference

[1] J. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger.

New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba.

Fast Software Encryption, 15th International Workshop, Lausanne, Switzerland, Revised Selected Papers, 5086:470-488, 2008.

https://doi.org/10.1007/978-3-540-71039-4_30.

[2] A. R. Choudhuri and S. Maitra.

Significantly Improved Multi-bit Differentials for Reduced Round Salsa and ChaCha.

IACR Trans. Symmetric Cryptol., 2016(2):261-287, 2016.

https://doi.org/10.13154/tosc.v2016.i2.261-287.

[3] M. Coutinho and T. C. S. Neto.

New Multi-bit Differentials to Improve Attacks Against ChaCha.

IACR Cryptol, ePrint Arch., page 350, 2020.

https://eprint.jacr.org/2020/35

[4] Z. Shi, B. Zhang, D. Feng, and W. Wu.

Improved Key Recovery Attacks on Reduced-Round Salsazo and ChaCha.

Information Security and Cryptology - ICISC 2012 - 15th International Conference, Seoul, Korea, Revised Selected Papers, 7839:337–351, 2012.

https://doi.org/10.1007/978-3-642-37682-5 24

Dhonnobad !! (Thank You)