
Subverting Telegram’s End-to-End Encryption

Benôıt Cogliati, Jordan Ethan, Ashwin Jha

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

March 22, 2023

1 / 27

Table of Contents

1. Motivation

2. MTProto 2.0 for Secret Chats

3. Subverting Secret Chats in MTProto2.0

2 / 27

Why Telegram?

• Over 500 million active users.

• Claims to be faster and safer
than alternatives.

• Uses it’s own security protocol -
MTProto.

• Not a lot of existing analysis.

3 / 27

Why Telegram?

• Over 500 million active users.

• Claims to be faster and safer
than alternatives.

• Uses it’s own security protocol -
MTProto.

• Not a lot of existing analysis.

3 / 27

Why Telegram?

• Over 500 million active users.

• Claims to be faster and safer
than alternatives.

• Uses it’s own security protocol -
MTProto.

• Not a lot of existing analysis.

3 / 27

Why Telegram?

• Over 500 million active users.

• Claims to be faster and safer
than alternatives.

• Uses it’s own security protocol -
MTProto.

• Not a lot of existing analysis.

3 / 27

Conversation Modes

• Cloud chats:
• Uses client ⇔ server encryption.
• Messages are stored (encrypted) in the server (Telegram’s).
• Chat history accessible across devices.

• Secret chats:
• Uses E2EE.
• Messages are stored locally only.

4 / 27

Conversation Modes

• Cloud chats:
• Uses client ⇔ server encryption.
• Messages are stored (encrypted) in the server (Telegram’s).
• Chat history accessible across devices.

• Secret chats:
• Uses E2EE.
• Messages are stored locally only.

4 / 27

MTProto security

• MTProto 1.0 not IND-CCA - Jakobsen, and Orlandi in 2016 [JO16].

• Telegram revised scheme - MTProto 2.0 (IND-CCA?)

• MTProto 2.0 is IND-CCA - Albrecht et al., 2022 [Alb+22] (requires non-standard
assumptions on building blocks).

• What about practical attacks? subversion attacks?

5 / 27

MTProto security

• MTProto 1.0 not IND-CCA - Jakobsen, and Orlandi in 2016 [JO16].

• Telegram revised scheme - MTProto 2.0 (IND-CCA?)

• MTProto 2.0 is IND-CCA - Albrecht et al., 2022 [Alb+22] (requires non-standard
assumptions on building blocks).

• What about practical attacks? subversion attacks?

5 / 27

MTProto security

• MTProto 1.0 not IND-CCA - Jakobsen, and Orlandi in 2016 [JO16].

• Telegram revised scheme - MTProto 2.0 (IND-CCA?)

• MTProto 2.0 is IND-CCA - Albrecht et al., 2022 [Alb+22] (requires non-standard
assumptions on building blocks).

• What about practical attacks? subversion attacks?

5 / 27

MTProto security

• MTProto 1.0 not IND-CCA - Jakobsen, and Orlandi in 2016 [JO16].

• Telegram revised scheme - MTProto 2.0 (IND-CCA?)

• MTProto 2.0 is IND-CCA - Albrecht et al., 2022 [Alb+22] (requires non-standard
assumptions on building blocks).

• What about practical attacks? subversion attacks?

5 / 27

Subversion Attacks - Motivation

• Snowden revelations - mass
surveillance of the internet is taking
place by governmental agencies.

• Is just encrypting the data enough?
No

• Agencies can inject backdoors into
secure implementations by
manipulating the encryption
algorithms.

6 / 27

Subversion Attacks - Motivation

• Snowden revelations - mass
surveillance of the internet is taking
place by governmental agencies.

• Is just encrypting the data enough?
No

• Agencies can inject backdoors into
secure implementations by
manipulating the encryption
algorithms.

6 / 27

Subversion Attacks - Motivation

• Snowden revelations - mass
surveillance of the internet is taking
place by governmental agencies.

• Is just encrypting the data enough?
No

• Agencies can inject backdoors into
secure implementations by
manipulating the encryption
algorithms.

6 / 27

Subversion Attacks - History

• Foundations by Young and Yung in 90’s [YY96; YY97] (kleptography).
• Output of subverted algorithm is computationally indistinguishable from output of

unmodified algorithm.
• Subverted algorithm should leak the secret key through the output.

• Later on Bellare et al. in 2014 [BPR14], introduced Algorithm Substitution Attacks
(ASAs) against randomized encryption schemes.
• Relies on randomness generated in the course of encryption.
• Attack works against sub-class of randomized schemes (coin-injectivity).

7 / 27

Subversion Attacks - History

• Foundations by Young and Yung in 90’s [YY96; YY97] (kleptography).
• Output of subverted algorithm is computationally indistinguishable from output of

unmodified algorithm.
• Subverted algorithm should leak the secret key through the output.

• Later on Bellare et al. in 2014 [BPR14], introduced Algorithm Substitution Attacks
(ASAs) against randomized encryption schemes.
• Relies on randomness generated in the course of encryption.
• Attack works against sub-class of randomized schemes (coin-injectivity).

7 / 27

Our Contribution

1. First partial key recovery algorithm substitution attack (ASA) on secret chat mode of
Telegram:
• exploit the random padding (and length) used during the encryption.
• our attack works on desktop client and tdlib library (used by third party clients).

2. The subversion attack can be averted (modified version).

8 / 27

Our Contribution

1. First partial key recovery algorithm substitution attack (ASA) on secret chat mode of
Telegram:
• exploit the random padding (and length) used during the encryption.
• our attack works on desktop client and tdlib library (used by third party clients).

2. The subversion attack can be averted (modified version).

8 / 27

Table of Contents

1. Motivation

2. MTProto 2.0 for Secret Chats

3. Subverting Secret Chats in MTProto2.0

9 / 27

MTProto 2.0 - Scheme

X′
payload

K

2048-bits

k1
256-bits

F

Authentication

k2

576-bits

G

KDF

t

E+

IV-Encryption

l , iv

(f , c , t)
c

10 / 27

MTProto 2.0 - Scheme

X′
payload

K

2048-bits

k1
256-bits

F

Authentication

k2

576-bits

G

KDF

t

E+

IV-Encryption

l , iv

(f , c , t)
c

10 / 27

MTProto 2.0 - Scheme

X′
payload

K

2048-bits

k1
256-bits

F

Authentication

k2

576-bits

G

KDF

t

E+

IV-Encryption

l , iv

(f , c , t)
c

10 / 27

MTProto 2.0 - Scheme

X′
payload

K

2048-bits

k1
256-bits

F

Authentication

k2

576-bits

G

KDF

t

E+

IV-Encryption

l , iv

(f , c , t)
c

10 / 27

MTProto 2.0 - Scheme

X′
payload

K

2048-bits

k1
256-bits

F

Authentication

k2

576-bits

G

KDF

t

E+

IV-Encryption

l , iv

(f , c , t)
c

10 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:

• in seq no + out seq no → used to derive the state for our attack.
• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our

attack.
• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:

• in seq no + out seq no → used to derive the state for our attack.
• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our

attack.
• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:

• in seq no + out seq no → used to derive the state for our attack.
• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our

attack.
• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:
• in seq no + out seq no → used to derive the state for our attack.

• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our
attack.

• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:
• in seq no + out seq no → used to derive the state for our attack.
• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our

attack.

• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Payload for Secret Chats

• The Full message is defined by:

X := length∥payload type∥random bytes∥layer∥in seq no

∥out seq no∥message type∥message data

• The payload is defined by:

X′ := X∥random padding

• In our attack we will use three of these fields:
• in seq no + out seq no → used to derive the state for our attack.
• σ′ = |X′| = length is random and divisible by 16 bytes → the main vulnerability for our

attack.
• random padding = 12 to 1024 random bytes → used to improve our attack.

11 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Sampling Padding Length

• Upon code inspection → padding length is sampled differently for each platform.

• We concentrate on: desktop client & tdlib libary (for third party).

• Original Sampling: (Message of σ bytes)

σ′ = g(σ) + v , v ←$ [0, 15]. (16-byte block)

• Alternative Sampling:

σ′ mod 16←$ [0, 15]→ σ′ : ⌊(σ′ − g(σ))/16⌋ > 0. (16-byte block)

• This second sampling mechanism will prove useful for our attack.

• Pad(M, v) = M is padded to a message whose length in 16-byte length is v mod 16.

12 / 27

Table of Contents

1. Motivation

2. MTProto 2.0 for Secret Chats

3. Subverting Secret Chats in MTProto2.0

13 / 27

Algorithm Substitution Attacks

Normal Setting:

C = E+(KE ,A,M, iv, state) M = E−(KE ,A,C , state ′)

C

Subverted Setting:

C = Ẽ+(KA,KE ,A,M, iv, state)
M = E−(KE ,A,C , state ′) (Decryptable)

C

(K = KE)?

Ẽext(A,C)

14 / 27

Algorithm Substitution Attacks

Normal Setting:

C = E+(KE ,A,M, iv, state) M = E−(KE ,A,C , state ′)

C

Subverted Setting:

C = Ẽ+(KA,KE ,A,M, iv, state)
M = E−(KE ,A,C , state ′) (Decryptable)

C

(K = KE)?

Ẽext(A,C)

14 / 27

Algorithm Substitution Attacks - Goals

• The subversion has two goals:

• Undetectability: as long as client/server does not have access to KA, the outputs of the real
encryption and the subverted encryption are indistinguishable.

• Key Recovery: the subversion is able to recover a part of the key KE .

• If no state was used it is called stateless (otherwise stateful).

15 / 27

Algorithm Substitution Attacks - Goals

• The subversion has two goals:
• Undetectability: as long as client/server does not have access to KA, the outputs of the real

encryption and the subverted encryption are indistinguishable.

• Key Recovery: the subversion is able to recover a part of the key KE .

• If no state was used it is called stateless (otherwise stateful).

15 / 27

Algorithm Substitution Attacks - Goals

• The subversion has two goals:
• Undetectability: as long as client/server does not have access to KA, the outputs of the real

encryption and the subverted encryption are indistinguishable.
• Key Recovery: the subversion is able to recover a part of the key KE .

• If no state was used it is called stateless (otherwise stateful).

15 / 27

Algorithm Substitution Attacks - Goals

• The subversion has two goals:
• Undetectability: as long as client/server does not have access to KA, the outputs of the real

encryption and the subverted encryption are indistinguishable.
• Key Recovery: the subversion is able to recover a part of the key KE .

• If no state was used it is called stateless (otherwise stateful).

15 / 27

Attack - Key Ideas

• Our attack relies on the same idea as the one from Bellare et al. [BJK15].

• They present a very simple subversion attack for randomized IV-based encryption schemes
that relies on a PRF F with output space of size n + 1 bits (|KE | = n).
• The idea of the attack:

• Subversion: Sample iv until the cipher text C = E(KE ,A,M, iv) satisfies FKA
(C) = (b, i)

where KE [i] = b (or s rounds have passed).

• Key Recovery: Recover the key bits from the ciphertexts returned by the subversion.

• The attack is stateless (to avoid state rests) but it can fail on a specific key bit.

16 / 27

Attack - Key Ideas

• Our attack relies on the same idea as the one from Bellare et al. [BJK15].

• They present a very simple subversion attack for randomized IV-based encryption schemes
that relies on a PRF F with output space of size n + 1 bits (|KE | = n).

• The idea of the attack:
• Subversion: Sample iv until the cipher text C = E(KE ,A,M, iv) satisfies FKA

(C) = (b, i)
where KE [i] = b (or s rounds have passed).

• Key Recovery: Recover the key bits from the ciphertexts returned by the subversion.

• The attack is stateless (to avoid state rests) but it can fail on a specific key bit.

16 / 27

Attack - Key Ideas

• Our attack relies on the same idea as the one from Bellare et al. [BJK15].

• They present a very simple subversion attack for randomized IV-based encryption schemes
that relies on a PRF F with output space of size n + 1 bits (|KE | = n).
• The idea of the attack:

• Subversion: Sample iv until the cipher text C = E(KE ,A,M, iv) satisfies FKA
(C) = (b, i)

where KE [i] = b (or s rounds have passed).
• Key Recovery: Recover the key bits from the ciphertexts returned by the subversion.

• The attack is stateless (to avoid state rests) but it can fail on a specific key bit.

16 / 27

Attack - Key Ideas

• Our attack relies on the same idea as the one from Bellare et al. [BJK15].

• They present a very simple subversion attack for randomized IV-based encryption schemes
that relies on a PRF F with output space of size n + 1 bits (|KE | = n).
• The idea of the attack:

• Subversion: Sample iv until the cipher text C = E(KE ,A,M, iv) satisfies FKA
(C) = (b, i)

where KE [i] = b (or s rounds have passed).
• Key Recovery: Recover the key bits from the ciphertexts returned by the subversion.

• The attack is stateless (to avoid state rests) but it can fail on a specific key bit.

16 / 27

Our Scenario

• Our setting differs from Bellare et al.[BJK15], in two main points:

• MTProto 2.0 maintains a state for each key → subversion can be stateful.
• The communicating parties are honest and interested in secure communication → the key is

assumed to be generated at random ([AP19]).

• We present two subversion attacks on MTProto 2.0.

• The first attack relies on an additional length-preserving deterministic encryption scheme
E .

17 / 27

Our Scenario

• Our setting differs from Bellare et al.[BJK15], in two main points:
• MTProto 2.0 maintains a state for each key → subversion can be stateful.

• The communicating parties are honest and interested in secure communication → the key is
assumed to be generated at random ([AP19]).

• We present two subversion attacks on MTProto 2.0.

• The first attack relies on an additional length-preserving deterministic encryption scheme
E .

17 / 27

Our Scenario

• Our setting differs from Bellare et al.[BJK15], in two main points:
• MTProto 2.0 maintains a state for each key → subversion can be stateful.
• The communicating parties are honest and interested in secure communication → the key is

assumed to be generated at random ([AP19]).

• We present two subversion attacks on MTProto 2.0.

• The first attack relies on an additional length-preserving deterministic encryption scheme
E .

17 / 27

Our Scenario

• Our setting differs from Bellare et al.[BJK15], in two main points:
• MTProto 2.0 maintains a state for each key → subversion can be stateful.
• The communicating parties are honest and interested in secure communication → the key is

assumed to be generated at random ([AP19]).

• We present two subversion attacks on MTProto 2.0.

• The first attack relies on an additional length-preserving deterministic encryption scheme
E .

17 / 27

Our Scenario

• Our setting differs from Bellare et al.[BJK15], in two main points:
• MTProto 2.0 maintains a state for each key → subversion can be stateful.
• The communicating parties are honest and interested in secure communication → the key is

assumed to be generated at random ([AP19]).

• We present two subversion attacks on MTProto 2.0.

• The first attack relies on an additional length-preserving deterministic encryption scheme
E .

17 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)

• Encrypt Y = EKA
(KE).

• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).

• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.

• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).

• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)

• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.

• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.

• Decrypt K = E−
KA
(Y) to obtain key guess.

18 / 27

Attack 1

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encrypt (C ,T)← E+(KE ,M)

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

18 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 1 - Analysis

• E is indistinguishable from Ẽ as long as E is secure.

• If (q > |K |/4) the key recovery is successful.

• Maximum of key bits recovered ≤ 100 · 4 (because of key regeneration).

• The adversary is interested in reading messages → needs 576-bit of the master key for the
encryption pass.

• Key size is 576 > 400-bits, luckily padding bits have not been exploited!

• We present an improved algorithm, that uses an additional PRF F with output space of δ
bits and adversary key K ′

A, (τ = (4 + δ)σ).

19 / 27

Attack 2

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encryption:

• Compute tag T ← F(KE , pad(M, len)) until FK ′
A
(T) = Y [τ + 3, τ + 3 + δ] (or s rounds have

passed).
• Continue the original encryption scheme.

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

20 / 27

Attack 2

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encryption:

• Compute tag T ← F(KE , pad(M, len)) until FK ′
A
(T) = Y [τ + 3, τ + 3 + δ] (or s rounds have

passed).

• Continue the original encryption scheme.

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

20 / 27

Attack 2

• Subversion: Ẽ+(KA,KE ,M, σ)
• Encrypt Y = EKA

(KE).
• Derive padding length len← Y [4σ, 4σ + 3] from the state σ < |KE |/4.
• Pad the message M ← pad(M, len).
• Encryption:

• Compute tag T ← F(KE , pad(M, len)) until FK ′
A
(T) = Y [τ + 3, τ + 3 + δ] (or s rounds have

passed).
• Continue the original encryption scheme.

• Key Recovery: Ẽext(KA,C, σ)
• For every ciphertext C ∈ C, Cv := (C/16) mod 16.
• Join all values Cv together and form Y of size |KE | = n.
• Decrypt K = E−

KA
(Y) to obtain key guess.

20 / 27

Attack 2 - Analysis

• G,E+ (heavy computation) computed only once instead of s times (reduces cost).

• F is an iterated hash → save computation on fixed blocks and hash only random padding
(saves computation each loop iteration).

• Undetectability: For some parameters and as long as the advantages for the adversaries
of PRF F , encryption scheme E as well as of Mtproto E are all negligible then so is the
advantage for our detectability adversary.

• Key Recovery: For q ≥ ⌈|KE |/(4 + δ)⌉, the same parameters as above and as long as
the advantages for the adversaries of PRF F and Mtproto E are negligible then the key
recovery success is at least ≈ 1− qe−δs .

21 / 27

Attack 2 - Analysis

• G,E+ (heavy computation) computed only once instead of s times (reduces cost).

• F is an iterated hash → save computation on fixed blocks and hash only random padding
(saves computation each loop iteration).

• Undetectability: For some parameters and as long as the advantages for the adversaries
of PRF F , encryption scheme E as well as of Mtproto E are all negligible then so is the
advantage for our detectability adversary.

• Key Recovery: For q ≥ ⌈|KE |/(4 + δ)⌉, the same parameters as above and as long as
the advantages for the adversaries of PRF F and Mtproto E are negligible then the key
recovery success is at least ≈ 1− qe−δs .

21 / 27

Attack 2 - Analysis

• G,E+ (heavy computation) computed only once instead of s times (reduces cost).

• F is an iterated hash → save computation on fixed blocks and hash only random padding
(saves computation each loop iteration).

• Undetectability: For some parameters and as long as the advantages for the adversaries
of PRF F , encryption scheme E as well as of Mtproto E are all negligible then so is the
advantage for our detectability adversary.

• Key Recovery: For q ≥ ⌈|KE |/(4 + δ)⌉, the same parameters as above and as long as
the advantages for the adversaries of PRF F and Mtproto E are negligible then the key
recovery success is at least ≈ 1− qe−δs .

21 / 27

Attack 2 - Analysis

• G,E+ (heavy computation) computed only once instead of s times (reduces cost).

• F is an iterated hash → save computation on fixed blocks and hash only random padding
(saves computation each loop iteration).

• Undetectability: For some parameters and as long as the advantages for the adversaries
of PRF F , encryption scheme E as well as of Mtproto E are all negligible then so is the
advantage for our detectability adversary.

• Key Recovery: For q ≥ ⌈|KE |/(4 + δ)⌉, the same parameters as above and as long as
the advantages for the adversaries of PRF F and Mtproto E are negligible then the key
recovery success is at least ≈ 1− qe−δs .

21 / 27

Success of Our Attack

δ s q k Pr

2 21 50 300 ≥ 0.88

4 91 50 400 ≥ 0.85

6 369 50 500 ≥ 0.85

8 1485 50 600 ≥ 0.85

10 5946 50 700 ≥ 0.85

• Dominating term of success is qe−δs for q ≤ 100.

• If victim sends ≈ 50 messages per key then for
δ = 8, s = 1485 we can recover 600 > 576 key bits
with probability ≥ 0.85.

• s = 1485 too large (increased energy → OS
detection)

• More modest approach: 500 key bits using
δ = 6, s = 369 with probability ≥ 0.85
(computationally cheaper).

22 / 27

Success of Our Attack

δ s q k Pr

2 21 50 300 ≥ 0.88

4 91 50 400 ≥ 0.85

6 369 50 500 ≥ 0.85

8 1485 50 600 ≥ 0.85

10 5946 50 700 ≥ 0.85

• Dominating term of success is qe−δs for q ≤ 100.

• If victim sends ≈ 50 messages per key then for
δ = 8, s = 1485 we can recover 600 > 576 key bits
with probability ≥ 0.85.

• s = 1485 too large (increased energy → OS
detection)

• More modest approach: 500 key bits using
δ = 6, s = 369 with probability ≥ 0.85
(computationally cheaper).

22 / 27

Success of Our Attack

δ s q k Pr

2 21 50 300 ≥ 0.88

4 91 50 400 ≥ 0.85

6 369 50 500 ≥ 0.85

8 1485 50 600 ≥ 0.85

10 5946 50 700 ≥ 0.85

• Dominating term of success is qe−δs for q ≤ 100.

• If victim sends ≈ 50 messages per key then for
δ = 8, s = 1485 we can recover 600 > 576 key bits
with probability ≥ 0.85.

• s = 1485 too large (increased energy → OS
detection)

• More modest approach: 500 key bits using
δ = 6, s = 369 with probability ≥ 0.85
(computationally cheaper).

22 / 27

Success of Our Attack

δ s q k Pr

2 21 50 300 ≥ 0.88

4 91 50 400 ≥ 0.85

6 369 50 500 ≥ 0.85

8 1485 50 600 ≥ 0.85

10 5946 50 700 ≥ 0.85

• Dominating term of success is qe−δs for q ≤ 100.

• If victim sends ≈ 50 messages per key then for
δ = 8, s = 1485 we can recover 600 > 576 key bits
with probability ≥ 0.85.

• s = 1485 too large (increased energy → OS
detection)

• More modest approach: 500 key bits using
δ = 6, s = 369 with probability ≥ 0.85
(computationally cheaper).

22 / 27

Implications of Our Attack

• Telegram’s claim - code builds are reproducible → difficult to massively roll out our
attack.

• The attack can still be deployed on targeted users or closed-source third party clients.

23 / 27

Implications of Our Attack

• Telegram’s claim - code builds are reproducible → difficult to massively roll out our
attack.

• The attack can still be deployed on targeted users or closed-source third party clients.

23 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:

• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):

• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.

• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability
at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):

• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):

• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):

• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):
• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).

• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):
• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.

• Assuming perfect decryptability & key-independent messages → modified version is
subversion-resistant.

24 / 27

Conclusions

• We introduced the first algorithm substitution attack on MTProto 2.0:
• We showed that the attack is undetectable.
• We showed that for q ≥ |K |/(4 + δ), we can extract 10 key bits per message with probability

at least 0.85 - enough to recover most of the key bits for the encryption pass.

• In the full paper, we show that the subversion attack can be averted (modified version):
• MTProto 2.0 can be seen as an instantiation of a secure DAE scheme (MTProto-G).
• Small changes to algorithm (mainly padding) → deterministic.
• Assuming perfect decryptability & key-independent messages → modified version is

subversion-resistant.

24 / 27

Thank You!

25 / 27

References I

[Alb+22] Martin R. Albrecht et al. “Four Attacks and a Proof for Telegram”. In: Security
and Privacy – IEEE-S&P 2022, Proceedings. 2022, pp. 87–106.

[AP19] Marcel Armour and Bertram Poettering. “Subverting Decryption in AEAD”. In:
Cryptography and Coding – IMACC 2019, Proceedings. 2019, pp. 22–41.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. “Mass-Surveillance without the
State: Strongly Undetectable Algorithm-Substitution Attacks”. In: Computer and
Communications Security – ACM-CCS 2015, Proceedings. 2015, 1431–1440.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. “Security of Symmetric
Encryption against Mass Surveillance”. In: Advances in Cryptology – CRYPTO
2014, Proceedings. 2014, pp. 1–19.

26 / 27

References II

[JO16] Jakob Jakobsen and Claudio Orlandi. “On the CCA (in)Security of MTProto”. In:
Security and Privacy in Smartphones and Mobile Devices – SPSM@CCS 2016,
Proceedings. 2016, pp. 113–116.

[YY96] Adam L. Young and Moti Yung. “The Dark Side of ”Black-Box” Cryptography, or:
Should We Trust Capstone?” In: Advances in Cryptology – CRYPTO 1996,
Proceedings. 1996, pp. 89–103.

[YY97] Adam L. Young and Moti Yung. “Kleptography: Using Cryptography Against
Cryptography”. In: Advances in Cryptology – EUROCRYPT 1997, Proceeding.
1997, pp. 62–74.

27 / 27

	Motivation
	MTProto 2.0 for Secret Chats
	Subverting Secret Chats in MTProto2.0
	References

